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ABSTRACT

This dissertation analyzes the contracting problem between a firm and the

research employees in its R&D department. The dissertation consists of two chapters.

The first chapter addresses a simplified problem in which the R&D unit has only one

agent. The second chapter studies a scenario in which the R&D unit consists of a

team.

In the first chapter, I look at problem in which a principal hires an agent to

do a multi-stage R&D project. The transition from one stage to the next is modeled

by a Poisson-type process, whose arrival rate depends on the agents choice of effort. I

assume that effort choice is binary and unobservable by the principal. To overcome the

repeated moral-hazard problem, the principal offers the agent a long-term contract

which specifies a flow of payments based on his observation of the outcome of the

project. The optimal contract combines rewards and punishments: the payment to

the agent decrease over time in case of failure and jumps up to a higher level after each

success. I also show that the optimal contract can be implemented by using a risky

security that has some of the features of the stocks of these firms, thereby providing a

theoretical justification for the wide-spread use of stock-based compensation in firms

that rely on R&D.

In the second chapter, I look at a scenario in which the R&D unit consists

of a team, which I assume, for simplicity, comprises two risk-averse agents. Now,

the Poisson arrival rate is jointly determined by the actions of both agents with the
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action of each remaining unobservable by both the principal and the other agent. I

assume that when success in a phase occurs the principal can identify the agent who

was responsible for it. In this model, incentive compatibility means that each agent is

willing to exert effort conditional on his coworker putting in effort, and thus exerting

effort continuously is a Nash-equilibrium strategy played by the agents. In this multi-

agent problem, each agents payment depends not only on his own performance, but is

affected by the other agents performance as well. Similar to the single-agent case, an

agent is rewarded when he succeeds, and his payment decreases over time when both

agents fail. Regarding how an agents payment relates to his coworkers performance, I

find that the optimal incentive regime is a function of the way in which agents efforts

interact with one another: relative-performance evaluation is used when their efforts

are substitutes whereas joint-performance evaluation is used when their efforts are

complements. This result sheds new light on the notion of optimal incentive regimes,

an issue that has been widely discussed in multi-agent incentive problems.
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CHAPTER 1
REPEATED MORAL HAZARD IN MULTI-STAGE R&D PROJECTS

1.1 Introduction

Over the last decade, the industries of information and communication tech-

nologies have become the engines of the U.S. economy: during this period, they have

had an average share of 4.6 percent of gross GDP and have accounted for one-fourth

of GDP-growth. A distinct feature of these so-called “new-economy” industries is a

substantial investment in R&D, which constituted a third of business-sector expendi-

ture on R&D in 2007 according to a recent report of the Bureau of Economic Analysis.

Clearly, the success of firms in these industries depends crucially on the performance

of the employees in their R&D units, and compensation schemes for these researchers

become a major decision for these firms. This decision-problem shares some features

with the standard problem of providing incentives to workers, but it also has some

unique features. Like its standard counterpart, a moral-hazard phenomenon arises

in this specific agency relationship. The outcome of research is uncertain, i.e. effort

put into research today will not necessarily lead to a discovery tomorrow. However,

the stochastic process governing the outcomes is influenced by how much effort is put

into research: higher levels of effort increase the chance of making a discovery. Owing

to task-complexity, effort exerted by researchers is difficult to monitor. Now, if the

effort level is unobservable, then the imperfect monitoring of effort combined with

the stochastic feature of innovation maps into a moral-hazard problem. Furthermore,



www.manaraa.com

2

since most R&D projects last a long period of time, the moral-hazard problem is

dynamic in nature.

The point of departure from standard agency problems is the feature that

some R&D projects progress through different phases, with research in each phase

depending on the outcomes of previous phases. In these new-economy industries, this

feature is particularly prominent. For example, in the software industry, Microsoft

has released a sequence of Windows operating systems since 1985, from Windows 3.0,

to Windows XP, and then to the most recent version, Windows 7. In each upgrade,

Microsoft introduced a number of new features which make the use of computers

easier and more convenient. In the hardware industry, the development of Intel’s

CPU is an example of multi-stage R&D. From its earlier 8086 and 8088 processors to

the advanced Intel Core processor family, besides the fast-growing initial clock speed

(from 2MHz to 3GHz), Intel has also added new instructions to each new generation,

which are specially optimized for the demand of new applications.

The agency problem faced by these new-economy firms combines the two fea-

tures described above, namely an imperfect correlation between outcome and effort,

and the multistage nature of the innovative process. Firms try to overcome this

agency problem by adopting stock-based grants, especially employee stock-options,

which have become a primary component of compensation for employees in R&D

departments in the past two decades. Since the researchers’ actions have a great im-

pact on the performance of the firms, which in turn affects the return of their stocks,

stock-based compensation reduces the agency problem by providing a direct link be-
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tween company performance and researchers’ wealth, thereby providing incentive for

researchers to put in effort in research. Moreover, since the employee stock-options

have a vesting period during which they cannot be exercised, they are widely used

by firms to provide long-term incentives. The question then is whether these schemes

are optimal.

We approach the problem by first studying the contracting problem in the

abstract, deriving the optimal contract and demonstrating an implementation of the

optimal contract. Finally we relate our implementation result with the observed busi-

ness practices. Our finding is that the optimal contract can be implemented by using

a risky security, which shares features of the stock of these firms, thereby providing a

theoretical justification for the wide-spread use of stock-based compensation in firms

that rely on R&D.

Briefly, the setup of the paper is as follows. At any point in time, the agent

can choose whether to put in effort or shirk. Conditional on putting in effort, the

transition from one stage to the next is a Poisson-type process with a constant arrival

rate. If the agent chooses to shirk, the Poisson arrival rate is zero. The principal

cannot observe the agent’s action. However, the whole history of the innovation

process is publicly observable, and the principal will use precisely this information

to provide incentives optimally. To overcome the repeated moral-hazard problem,

the principal offers the agent a long-term contract which specifies a flow of payments

based on his observation of the outcome of the project.

We use recursive techniques to characterize the optimal dynamic contract.
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First, we start with a problem in which the R&D project has only one stage. After

characterizing the optimal contract in this problem, we use the results for this case to

analyze the multi-stage problem by backward induction. We find that in the optimal

contract, the principal uses a compensation scheme that combines punishments with

rewards. If the agent fails to make a discovery, his continuation utility and payment

decrease over time until a discovery is made. If the agent completes a stage, the

principal rewards the agent by a discrete increase in the continuation utility.

We also provide a way to implement the optimal contract, in which a primary

component of the agent’s compensation is a state-contingent security whose return

in case of success is higher than that in case of failure. We assume that investing

in this security is the only saving-technology for the agent to smooth consumption

overtime. At any point in time, besides the effort-choice, the agent also chooses how

much to consume and how much to invest in the security, subject to a minimum-

holding requirement. Different from the optimal contract, in which the principal

controls the agent’s consumption directly, the agent chooses the consumption process

by himself in this implementation, which nonetheless generates the same effort and

consumption process as the optimal contract. This implementation overcomes the

problem pointed out by Rogerson (1985) which is that, if the agent is allowed access

to credit, he would choose to save some of his wages, if he could, because of a wedge

between the agent’s Euler equation and the inverse Euler equation implied by the

principal’s problem. In our implementation, however, the return on savings is state

contingent. When we choose the state-dependent rates of return appropriately, the
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agent’s Euler equation mimics the inverse Euler equation; put differently, the wedge

between the Euler equation and the inverse Euler equation disappears.

This implementation is similar to the stock-based compensation scheme used

in the real-world in two aspects. First, the return of the state contingent security and

the stock price have a similar trend, with an notable increase after each breakthrough

in R&D. Second, in the implementation, the agent is required to hold a certain amount

of the state-contingent security until he completes the entire project. Similarly, stock

options have a vesting period during which they cannot be exercised. Capturing

these two main features, our implementation provides a theoretical explanation for

the compensation scheme used in reality.

This paper is related to three strands of literature: memoryless patent races,

management compensation and dynamic contracts. In the current paper, the in-

novation process is modeled by a memoryless process—the probability of making a

discovery at a point of time depends only on the agent’s current action. This way

of modeling the stochastic innovation process is commonly used in the patent-race

literature, for example, Dasgupta and Stiglitz (1980), Lee and Wilde (1980).

In the management-compensation literature, there is extensive research on

stock-based grants for CEO compensation. For researchers’ compensation, Ander-

son, Banker, and Ravindran (2000), Ittner, Lambert, and Larcker (2003), and Mur-

phy (2003) have documented that executives and employees in new-economy firms

receive more stock-based compensation than do their counterparts in old-economy

firms. Sesil, Kroumova, Blasi, and Kruse (2002) compares the performance of 229
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‘New Economy’ firms offering broad-based stock options to that of their non-stock

option counterparts, and shows that the former have higher shareholder returns. Our

implementation contributes to this literature by giving a rationale for the use of

stock-based compensation in new economy firms, from a theoretical point of view.

In terms of methodology, this paper relates to a rich and growing literature

on dynamic contracts. Starting with Green (1987) and Spear and Srivastava (1987),

using recursive techniques to characterize optimal dynamic contracts has become a

standard approach in dynamic-contract theory. Finally, our use of a Poisson process

is similar to Biais, Mariotti, Rochet, and Villeneuve (2010) and Myerson (2008). In

these two papers, bad events happen with higher Poisson arrival rate when agents do

not put enough effort to prevent such events. This current paper differs from these two

papers mainly in the assumption of the agent’s preference, which leads to different

dynamics of the agent’s payment. Both Biais, Mariotti, Rochet, and Villeneuve

(2010) and Myerson (2008) assume that the agent is risk neutral, and hence he does

not receive any payment until the continuation utility reaches a payment threshold.

In our model the agent is risk-averse, and his payment decreases over time if he fails

to make a discovery.

The rest of the paper is organized as follows. Section 1.2 describes the model.

In the first part of section 1.3, a single stage innovation problem is studied as a

benchmark. The results of the benchmark model are used in the second part of

section 1.3 to analyze the finite-stage problem. In this section, we also discuss the

infinite-stage problem. In section 1.4, we provide an implementation of the optimal
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dynamic contract. Section 1.5 concludes.

1.2 The Model

We consider a dynamic principal-agent model in continuous time. At time 0,

a principal hires an agent to do an R&D project. This project has N stages, which

must be completed sequentially, i.e. to develop the stage n (0 < n ≤ N) innovation,

the agent must have finished the innovation of stage n− 1.

We model the transition from one stage to the next by a Poisson-type process,

which is affected by the agent’s choice of effort. For simplicity, we assume that the

agent has only two choices of effort: he can either put in effort or shirk. Conditional

on putting in effort, the probability that during a period of length △t the agent has

not made a discovery is e−λ△t, where λ is the Poisson arrival rate. If the agent chooses

to shirk, the Poisson arrival rate is equal to zero.

Whether the agent puts in effort or shirks cannot be monitored by the princi-

pal. However, the principal can observe exactly when each stage of the R&D project is

completed. Thus, at any point of time, the principal knows the current stage and the

length of time it took the agent to finish each previous stage. Let Ht denote the stage

at time t. The stage-level process H = {Ht, 0 ≤ t < ∞} is stochastic and depends

on the agent’s choice of effort. The history of H, denoted as H t = {Hs, 0 ≤ s ≤ t},

is the realization of the stage-level process till time t. By assumption, H t is pub-

licly observable, which is the only information that the principal can use to provide

incentives to the agent.
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At time 0, the principal offers the agent a contract that specifies a flow of

consumption ct(H
t) based on the principal’s observation of the stage-level process.

Let T denote the stochastic stopping time when the agent finishes the last stage

innovation. Note that the history of the stage-level process will not get updated after

the agent finishes the last stage of the project. Thus, the principal can equivalently

give the agent a lump-sum consumption transfer at T .

The agent’s utility is determined by his consumption flow and the effort put in

research. The utility function is assumed to have a separable form U(c)−L(a), where

U(c) is the utility from consumption, and L(a) is the disutility of doing research. We

assume that U : [0,+∞) → [0,+∞) is an increasing, concave and C2 function with

the property that U ′(c) → +∞ as c → 0. The agent’s choice of effort is binary,

indicated by a ∈ {0, 1}. a = 1 means that the agent chooses to put in effort, and

a = 0 means that the agent chooses to shirk. Moreover, we assume that the disutility

of putting in effort equals some l > 0 and the disutility of shirking equals zero, i.e.

L(1) = l and L(0) = 0.

Given the contract, at any time t, the agent makes the effort choice based

on the observation of H t. Denote the effort process as a = {at(H t), 0 ≤ t < ∞}.

The agent’s objective is to choose the effort process a to maximize the total expected

utility. Thus, the agent’s problem is

max
{at,0≤t<+∞}

E

[ ∫ T

0

re−rt(U(ct)− L(at))dt+ e−rTU(cT )

]
,

where r is the discount rate. Moveover, the agent has a reservation-utility v0. If the

maximum expected utility he can get from the contract is less than v0, then the agent
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will reject the principal’s offer.

For simplicity, we assume that the agent and the principal have the same

discount rate. Hence, the principal’s expected cost is given by

E

[ ∫ T

0

re−rtctdt+ e−rT cT

]
.

The principal’s objective is to minimize the expected cost by choosing an

incentive-compatible payment scheme subject to delivering the agent the requisite

initial value of expected utility v0. Therefore, the principal’s problem is

min
{ct,0≤t<+∞}

E

[ ∫ T

0

re−rtctdt+ e−rT cT

]

s.t.

E

[ ∫ T

0

re−rt(U(ct)− l)dt+ e−rTU(cT )

]
≥ v0.

Finally, to simplify the analysis, we could recast the problem as one where

the principal directly transfers utility to the agent instead of consumption. In the

transformed problem, the principal chooses a stream of utility transfers ut(H
t) (0 ≤

t < +∞) to minimize the expected cost of implementing positive effort. Then, the

principal’s problem becomes

min
{ut,0≤t<+∞}

E

[ ∫ T

0

re−rtS(ut)dt+ e−rTS(uT )

]
s.t.

E

[ ∫ T

0

re−rt(ut − l)dt+ e−rTuT

]
≥ v0,
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where S(u) = U−1(u), which is the principal’s cost of providing the agent with utility

u. It can be shown that S(u) is a decreasing and strictly convex function. Moreover,

S(0) = 0 and S ′(0) = 0.

1.3 The Optimal Dynamic Contract

In this section, we derive the optimal dynamic contract and discuss its prop-

erties. In doing so, we follow the standard approach in the contracting literature:

the optimal contract is written in terms of the agent’s continuation-utility vt, which

is the total utility that the principal expects the agent to derive at any time t. At

any moment of time, given the continuation utility, the contract specifies the agent’s

utility flow, the continuation utility if the agent makes a discovery, and the law of

motion of the continuation utility if the agent fails to make a discovery.

1.3.1 Single-stage Problem

Before analyzing the multi-stage case, we first look at a simple case where the

R&D project has only one stage.

The continuous-time model can be interpreted as the limit of discrete-time

models in which each period lasts ∆t. When ∆t is small, conditional on putting in

effort, the probability that the agent successfully finishes the innovation during ∆t

is approximately λ∆t. For any given continuation-utility v, the principal needs to

decide a triplet (u, v, v̄) in each period, where

• u is the transferred-utility flow in the current period.

• v is the next-period continuation utility if the agent fails to make a discovery
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during this period of time.

• v̄ is the next-period continuation utility if the agent completes the innovation

during this period of time.

If the agent chooses to exert effort, his expected utility in the current period

is

r(u− l)∆t+ e−r∆t((1−∆tλ)v +∆tλv̄),

where the first term is the current-period utility flow and the second term is the

discounted expected continuation utility.

If the agent chooses to shirk, he does not incur any utility cost and will fail to

make a discovery with probability 1. Thus, his expected utility in the current period

is

ru∆t+ e−r∆tv.

The triplet (u, v, v̄) should satisfy two conditions. First, this policy should

indeed guarantee that the agent gets the promised-utility v. That is

r(u− l)∆t+ e−r∆t((1−∆tλ)v +∆tλv̄) = v.

Second, the policy should implement positive effort, i.e. the expected utility

of putting in effort should be higher than the expected utility of shirking. Thus,

r(u− l)∆t+ e−r∆t((1−∆tλ)v +∆tλv̄) ≥ ru∆t+ e−r∆tv.

Let C(v) be the principal’s minimum expected cost of providing the agent with
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continuation-utility v. Then, the Bellman equation is

C(v) = min
u,v,v̄

r(S(u))∆t+ e−r∆t((1− λ∆t)C(v) + λ∆tS(v̄))

s.t.

r(u− l)∆t+ e−r∆t((1−∆tλ)v +∆tλv̄) = v, (1.1)

r(u− l)∆t+ e−r∆t((1−∆tλ)v +∆tλv̄) ≥ ru∆t+ e−r∆tv, (1.2)

where S(u) is the principal’s cost given the transferred-utility u and S(v̄) is the

principal’s cost of providing the agent with the lump-sum utility-transfer v̄ when

the R&D project is completed. Equation (1.1) is the promise-keeping condition and

equation (1.2) is the incentive-compatibility condition.

Multiplying both sides of the Bellman equation and the promise-keeping con-

dition (1.1) by (1 + r∆t)/∆t and letting ∆t converge to 0, we derive the following

Hamilton-Jacobi-Bellman (HJB) equation in continuous time1

rC(v) = min
u,v̄

rS(u) + C ′(v)v̇ + λ(S(v̄)− C(v))

s.t.

v̇ = rv − r(u− l)− λ(v̄ − v), (1.3)

v̄ ≥ v +
rl

λ
. (1.4)

1In this paper, we derive the HJB equation, evolution of continuation utility, and the
incentive-compatibility condition in continuous time by considering the limit of a discrete-
time approximation. We can also derive these formally using stochastic-calculus techniques
(see Biais et al. (2010)). The reason we choose this method is because it is more intuitive
and generates the same result.
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The promise-keeping condition (1.1) becomes the evolution of the agent’s con-

tinuation utility in case of failure (1.3). In the discrete-time case, after choosing u

and v̄, v is given by the promise-keeping condition. When ∆t converges to 0, v con-

verges to v. Hence, in continuous time, the continuation utility in the case of failure

changes smoothly and its rate of change is determined by u and v̄. The continuation

utility can be explained as the value that the principal owes the agent. It grows at

the discount-rate r and falls due to the flow of repayment r(u− l) plus the expected

repayment λ(v̄ − v) if the agent completes the innovation.

The incentive-compatibility constraint becomes a very simple expression (1.4).

To get the agent to put in positive effort, the continuation utility should jump up by

at least rl
λ
in case of success. The term rl

λ
is the minimum reward that the principal

should give the agent when he completes the project. It is determined by three

parameters: r, l, and λ, which have the following interpretations: (1) r is discount

rate. The agent discounts the future utility at higher rate when r is bigger. (2) l

measures the cost of doing research. When l is big, the cost of doing research is high.

(3) λ measures the difficulty of the R&D project. Small λ implies a small chance of

success. Thus, a big reward is associated with a high discount-rate, or a high cost of

doing research, or a low chance of success.

Note that the continuation utility cannot be less than 0, because the agent

can guarantee a utility level of 0 by not putting in any effort. Therefore, a negative

continuation utility is not implementable.

To characterize the solution of the HJB equation, we do a diagrammatic anal-
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ysis in the v-C ′(v) plane. The dynamics of v and C ′(v) are determined by the sign

of dv/dt and dC ′(v)/dt. The expression of dv/dt is given by the evolution of the

continuation utility, which is known. However, the expression of dC ′(v)/dt depends

on whether the incentive-compatibility condition is binding or not. The following

lemma gives the condition under which this condition binds.

Lemma 1.3.1. The incentive-compatibility condition binds if and only if C ′(v) ≤

S ′(v + rl
λ
).

The next two lemmas determine the sign of dC ′(v)/dt and dv/dt under these

two different conditions.

Lemma 1.3.2. If C ′(v) < S ′(v + rl
λ
), then dC′(v)

dt
< 0 and

dv

dt



< 0, if C ′(v) > S ′(v);

= 0, if C ′(v) = S ′(v);

> 0, if C ′(v) < S ′(v).

Lemma 1.3.3. If C ′(v) ≥ S ′(v + rl
λ
), then dC′(v)

dt
= 0 and dv

dt
< 0.

The proof of these lemmas can be found in appendix A.

Lemmas 1.3.1-1.3.3 characterize the dynamics of v and C ′(v) in the v-C ′(v)

plane. The S ′(v) = C ′(v) locus determines the dynamics of v: v is decreasing over

time above it and increasing over time below it. The S ′(v + rl
λ
) = C ′(v) locus de-

termines the dynamics of C ′(v): C ′(v) is constant over time above it and decreasing

over time below it. The dynamics are summarized in Figure 1.1.
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v

C
′
(v

)

 

 

C′(v) = S ′(v)

C′(v) = S ′(v + rl

λ
)

0

Figure 1.1: Phase Diagram

The next step is to find the optimal path in the phase diagram. From the

theorem regarding the existence of a solution to a differential equation, there is an

unique path from the line v = v0 to the origin (Path 1 in Figure 1.2). First, any path

on which the state variable v diverges to infinity could be ruled out (such as Path

2). This contains the area below Path 1. In the area above Path 1, the continuation-

utility v is decreasing over time. When v hits the lower bound 0, it cannot decrease

any further. Thus, we must have dv/dt ≥ 0 at v = 0. This condition rules out any

path above Path 1 (such as Path 3) because dv/dt < 0 when v reaches 0 for any path

in this area. Then, Path 1 is the only candidate path left in the phase diagram, and

hence it is the optimal path that we are looking for. The final step is to pin down the
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boundary condition at v = 0. At this point, we have u = 0 and v̄ = rl
λ
. Thus, when

v reaches 0, the agent’s continuation utility and transferred-utility flow remain at 0

until he makes a discovery. To force the agent to put in positive effort, the principal

needs to offer a lump-sum utility transfer of rl
λ
when the agent completes the single

stage R&D project. We can pin down the boundary condition at v = 0

C(0) =

∫ ∞

t=0

e−rte−λtλS(
rl

λ
)dt = (r + λ)−1λS(

rl

λ
).

To summarize, starting at the initial point (v0, C
′(v0)), the optimal path locates

between the S ′(v) = C ′(v) locus and the S ′(v + rl
λ
) = C ′(v) locus and reaches the

lower bound of the continuation utility at the origin (Figure 1.2).

v

C
′
(v

)

 

 

C′(v) = S′(v)

C′(v) = S′(v + rl

λ
)

0 v0

Path 3

Path 1 Path 2

Figure 1.2: Optimal Path
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The optimal path and the boundary condition together determine the solution

of the HJB equation. The properties of the optimal dynamic contract are summarized

in Proposition 1.3.4.

Proposition 1.3.4. The contract that minimizes the principal’s cost takes the fol-

lowing form:

1. The principal’s expected cost at any point is given by an increasing and convex

function C(v), which satisfies

rC(v) = rS(u) + C ′(v)(r(v − u)) + λ(S(v̄)− C(v)),

and boundary condition C(0) =
λS( rl

λ
)

r+λ
.

2. The transferred-utility u satisfies S ′(u) = C ′(v).

3. When the agent completes the innovation, he receives a lump-sum transfer of

v̄, which satisfies v̄ = v + rl
λ
.

4. In case of failure to complete the innovation, the continuation-utility v evolves

according to v̇ = r(v − u), which is decreasing over time and asymptotically

goes to 0.

5. u and v̄ have the same dynamics as v.

Proof. For part 1, it has been shown that C(v) is determined by the HJB equation

and the boundary condition. On the optimal path, C ′(v) is strictly increasing in v,

which implies that C(v) is strictly convex. In addition, C ′(0) = S ′(0) = 0. Thus

C ′(v) > 0 for all v. Consequently, C(v) is an increasing function.
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Part 2 is due to the fact that the transferred-utility flow is determined by the

first-order condition S ′(u) = C ′(v).

For part 3, note that the optimal path locates in the area where the incentive-

compatibility constraint binds. Hence, v̄ = v + rl
λ
.

For part 4, note that on the optimal path v is decreasing over time and asymp-

totically converges to 0.

Finally, from part 2, S ′(u) = C ′(v). Because S(u) and C(v) are both convex,

u and v are positively related. From part 3, v̄ = v+ rl
λ
. Thus, u and v̄ have the same

dynamics as v, which proves part 5.

1.3.2 Multi-stage Problem

When the innovation process has multiple but finite number of stages, the

optimal dynamic contract can be derived by backward induction. When the project

is at stage n (0 < n ≤ N), we mean that the agents have finished the (n − 1)-th

innovation and are working on the n-th innovation. As in the last subsection, let u be

the transferred-utility flow, S(u) be the principal’s cost flow given the agent’s utility

flow u, and Cn(v) be the principal’s minimum expected cost of providing the agent

with continuation-utility v in stage n. In each stage n, given continuation-utility v,

the contract specifies the agent’s current utility flow u, the continuation-utility v̄ when

the agent successfully completes the innovation of stage (n+1), and the evolution of

the continuation utility in case of failure.

The backward induction starts from the last stage. After the agent completes
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the last-stage innovation, no further research work needs to be done and the agent

receives a lump-sum utility transfer of v. Therefore, CN+1(v̄) = S(v̄), which is known.

Then, the principal’s problem in the last stage is

rCN(v) = min
u,v̄

rS(u) + C ′
N(v)v̇ + λ(S(v̄)− CN(v))

s.t.

v̇ = rv − r(u− l)− λ(v̄ − v),

v̄ ≥ v +
rl

λ
.

This problem is the same as the single-stage problem. Thus, we have the

following proposition.

Proposition 1.3.5. The contract in the last stage takes the following form:

1. The principal’s expected cost at any point is given by an increasing and convex

function CN(v), which satisfies

rCN(v) = rS(u) + C ′
N(v)(r(v − u)) + λ(S(v̄)− CN(v)),

and boundary condition CN(0) =
λS( rl

λ
)

r+λ
.

2. The transferred-utility u satisfies S ′(u) = C ′
N(v).

3. When the agent completes the last stage innovation, he receives a lump-sum

utility transfer of v̄, which satisfies v̄ = v + rl
λ
.

4. In case of failure to complete the innovation, the continuation-utility v evolves

according to v̇ = r(v − u), which is decreasing over time and asymptotically

goes to 0.
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5. u and v̄ have the same dynamics as v.

The proof is similar to that of the proof of Proposition 1.3.4 and is therefore

omitted.

From the last-stage problem, we have figured out the principal’s minimum

expected cost CN(v) given the agent’s continuation-utility v in stage N . Now, given

Cn+1(v), the principal’s problem in stage n is

rCn(v) = min
u,v̄

rS(u) + C ′
n(v)v̇ + λ(Cn+1(v̄)− Cn(v))

s.t.

v̇ = rv − r(u− l)− λ(v̄ − v),

v̄ ≥ v +
rl

λ
.

Similar to the single-stage problem discussed in section 1.3.1, the dynamics

are determined by the C ′
n(v) = C ′

n+1(v + rl
λ
) locus and the C ′

n(v) = S ′(v) locus in

the phase diagram. It can be shown that the C ′
n(v) = C ′

n+1(v + rl
λ
) locus is always

above the C ′
n(v) = S ′(v) locus. By doing a similar phase-diagram analysis, we get

the following proposition.

Proposition 1.3.6. The optimal contract in an intermediate stage takes the following

form:

1. The principal’s expected cost at any point is given by an increasing and convex

function Cn(v), which satisfies

rCn(v) = rS(u) + C ′
n(v)(r(v − u)) + λ(Cn+1(v̄)− Cn(v)),
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and boundary condition Cn(0) =
λCn+1(

rl
λ
)

r+λ
.

2. The transferred-utility u satisfies S ′(u) = C ′
n(v).

3. When the agent completes stage n + 1 innovation, he enters stage n + 1 and

starts with continuation-utility v̄, which satisfies v̄ = v + rl
λ
.

4. In case of failure to complete the innovation, the continuation-utility v evolves

according to v̇ = r(v − u), which is decreasing over time and asymptotically

goes to 0.

5. u and v̄ have the same dynamics as v.

6. Cn(v) > Cn+1(v) for all v; C
′
n(v) > C ′

n+1(v) for all v > 0.

Part 6 of Proposition 1.3.6 shows that given the same continuation v, the cost

of delivering continuation-utility v is higher at an earlier stage than the cost at a

later stage. Moreover, the corresponding-transferred utility at an earlier stage is also

higher than the transferred utility at a later stage. When the project is at an earlier

stage, there are more stages left, and hence there are more uncertainties in the future.

Therefore, the cost of delivering the same level of continuation utility is higher at an

earlier stage than the cost at a later stage. Due to the same reason, at an earlier

stage, the principal chooses higher transferred utility, because delivering utility in the

future is costlier.

The difference between the last-stage problem and any of the intermediate-

stage problems is that in the last-stage problem the agent receives a lump-sum utility
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transfer when he finishes the innovation of the last stage; while in an intermediate

stage n, the agent enters stage (n+1) and starts with a higher continuation-utility af-

ter finishing the innovation of stage n. Figure 1.3 is a sample path of the continuation

utility for a 3-stage R&D project.
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Figure 1.3: Multi-stage

1.3.3 Infinite Stages

In this subsection, we consider the case in which the R&D project has an

infinite number of stages. Now, the principal needs to solve the same problem after

each success. Let C(v) be the principal’s minimum cost of providing continuation-
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utility v. Then, the optimal contract is characterized by the following HJB equation

rC(v) = min
u,v̄

rS(u) + C ′(v)v̇ + λ(C(v̄)− C(v))

s.t.

v̇ = rv − r(u− l)− λ(v̄ − v),

v̄ ≥ v +
rl

λ
,

where u is transferred-utility flow and v̄ is the agent’s continuation utility if he com-

pletes one innovation. Note that this differential equation is a delay differential equa-

tion. The derivative of the cost function at a point v depends on the value of the cost

function at another point v̄. Moreover, u is implicitly determined by C ′(v) by first-

order condition, which makes the problem even more complicated2. Shan (2010b)

provides a proof of the existence of a solution to this HJB equation under the as-

sumption that the derivative of S is bounded. Unfortunately, we cannot prove the

existence in more general case. A natural conjecture of the property of the cost func-

tion is that the cost function is twice-differentiable, strictly convex, and increasing.

Suppose there exists a solution to the HJB equation that satisfies these properties.

Due to strict convexity of the cost function, the incentive-compatibility condition

binds, which implies v̄ = v + rl
λ

and v̇ = rv − r(u − l) − λ(v̄ − v) = r(v − u).

2Biais, Mariotti, Rochet, and Villeneuve (2010) and Myerson (2008) analyze a similar
version of this kind of problem. Under the assumption of risk-neutrality, the agent does not
receive any payment until the continuation utility reaches a payment threshold at which he
receives constant payment per unit time, such that his continuation utility remains constant.
Then the HJB equation becomes a tractable delay differential equation.
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Substituting these into the HJB equation, we get

rC(v) = min
u,v̄

rS(u) + C ′(v)r(v − u) + λ(C(v +
rl

λ
)− C(v)).

Using envelop theorem,

rC ′(v) = C ′′(v)r(v − u) + rC ′(v) + λ(C ′(v +
rl

λ
)− C ′(v)).

Then,

v̇ = r(v − u) =
−λ(C ′(v + rl

λ
)− C ′(v))

C ′′(v)
< 0.

Thus, if there exists a strictly convex and increasing function C(v) that solves

the HJB equation, the optimal contract is similar to the optimal contact in finite-

stage case. In the optimal contract, the agent’s continuation utility decreases over

time in case of failure; after each success, it jumps up by rl
λ
.

1.3.3.1 An Example

If the agent’s utility from consumption takes the logarithmic form U(c) =

log(c), then we can provide a closed form solution to the HJB equation3. For loga-

rithmic utility, the cost of providing transferred utility flow u is S(u) = eu. Let X be

the set of all differentiable functions. Define an operator G : X → X by

(GC)(v) = min
u,v̄

rS(u) + C ′(v)v̇ + λ(C(v̄)− C(v))

r

3Note that the logarithmic utility function is unbounded from below. Hence there is no
lower bound the continuation utility.
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s.t.

v̇ = rv − r(u− l)− λ(v̄ − v),

v̄ ≥ v +
rl

λ
.

Then, the solution to the HJB equation is a fixed point of this operator.

Consider a cost function in the form of C(v) = qev, where q is a constant.

Apply the operator G to this cost function. Since C(v) is strictly convex, v̄ = v + rl
λ

and v̇ = rv − r(u − l) − λ(v̄ − v) = r(v − u). u is determined by the first order

condition S ′(u) = C ′(v). Thus,

eu = qev ⇒ u = v + log q,

and

v̇ = r(v − u) = −r log q.

Then we have

(GC)(v) =
rS(u) + C ′(v)v̇ + λ(C(v̄)− C(v))

r

=
rqev + qev(−r log q) + λ(qev+

rl
λ − qev)

r

=
rq − rq log q + λqe

rl
λ − λq

r
ev.

This result shows that if operator G is applied to C of the form qev, G(C) takes

the same form as C—a constant times ev. Thus, the solution to the HJB equation

has the form C(v) = q∗ev where q∗ solves

q∗ =
rq∗ − rq∗ log q∗ + λq∗e

rl
λ − λq∗

r
.
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Solving the equation, we get

q∗ = e
λ
r
(e

rl
λ −1).

1.4 Implementation

The optimal contract derived in the previous sections is written in terms of

continuation utility, which is highly abstract. Moreover, the principal controls the

agent’s consumption directly, i.e. the agent consumes all the payments from the

principal at any point in time. In this section, we provide an implementation of the

optimal contract, in which a primary component of the agent’s compensation is a

state-contingent security. In this implementation, besides the decision of exerting

effort or shirking, the agent also chooses consumption by himself. Yet, the imple-

mentation generates the same allocation as the original optimal contract. Finally, we

briefly discuss how this implementation relates to the compensation scheme used in

reality.

To introduce the design of the state-contingent security, we first look at a

discrete-time approximation of the continuous-time setting. The security lasts for

one period. When the project is at stage n, y shares of this security bought in period

t pays y in period t + 1 if the agent fails to make a discovery. If the agent succeeds,

the payoff is Yn+1(y), where Yn+1(y) is a function of y, which is stage specific. The

price of the security is determined by fair-price rule, i.e. the price of the security

equals the present value of this security. Let Pn(y) denote the price of y shares of the
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security when the project is at stage n. Then,

Pn(y) = e−r∆t((1− λ∆t)y + λ∆tYn+1(y)).

Remark: In general, the pricing function Pn is non-linear. But, if the utility

function is logarithmic, then Yn+1(y) is a linear function of y, and hence the pricing

function becomes linear Pn(y) = pny, where pn is the price for each share of the

security and is stage specific.

To implement the optimal contract, before the project starts, the principal

provides the agent with initial-wealth y0, and y
0
(y

0
≤ y0) of the initial wealth is

paid in terms of this security. When the project proceeds, in each period, the agent

is required to hold a minimum amount of this security until the whole project is

completed. The minimum amount requirement, denoted by y
n
, is also stage specific.

We assume that investing in this security is the only saving technology for the agent

to smooth consumption overtime. Hence, in each period, besides effort choice, the

agent also decides how much to consume and how much to invest in the security. Let

yt denote the agent’s wealth in period t. Then, his budget constraint is

rct∆t+ e−r∆t((1− λ∆t)yt+1 + λ∆tYn+1(yt+1)) ≤ yt,

where the first term on the left-hand side is his consumption in the current period,

and the second term is his investment in the security. Note that yt+1 is the number

of shares of the security that the agent purchases in period t, which is also his wealth

in period t + 1 is he fails to make a discovery. Let ∆t converses to 0, we can derive
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the evolution of the agent’s wealth in case of failure, which satisfies

ẏ = ry − rc− λ(Yn+1(y)− y).

When the project is in stage n, the agent’s wealth in case of failure grows at rate r,

and decreases due to the spending on consumption c and the loss of the investment

in the security λ(Yn+1(y)− y). If the agent succeeds, his wealth jumps to Yn+1(y).

The agent’s problem is to choose an effort process and a consumption process

to maximize his discounted expected utility. Let Vn(y) be the maximum expected

utility that the agent can get in stage i, given income y. Then, in recursive form, the

agent’s problem in stage n is to solve the following HJB equation

rVn(y) =

max{max
c

r(U(c)− l) + V ′
n(y)ẏ + λ(Vn+1(Yn+1(y))− Vn(y)),max

c
rU(c) + V ′

n(y)ẏ}

s.t.

ẏ = ry − rc− λ(Yn+1(y)− y),

y ≥ y
n
.

The next proposition shows that under certain conditions this implementation

generates the same allocation as the original optimal contract. The proof is in the

appendix.

Proposition 1.4.1. Suppose the principal provides the agent with initial wealth y0

y0 = C0(v0),
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and in stage n

Yn+1(y) = Cn+1(C
−1
n (y) +

rl

λ
),

y
n
= Cn(0).

Then, given income y, the highest discounted expected utility the agent can get is

Vn(y) = C−1
n (y),

and he chooses consumption flow c that satisfies

S ′(U(c)) = C ′
n(Vn(y)).

In addition, the agent always exerts effort until he completes the last-stage innovation.

In stage n, given income y, the highest expected utility that the agent can get

is Vn(y), and he chooses consumption flow c which satisfies S ′(U(c)) = C ′
n(Vn(y)).

In the optimal contract, the agent’s continuation utility is equal to Vn(y) at this

point of time. Given this continuation utility, the transferred-utility flow satisfies

S ′(u) = C ′
n(Vn(y)). This implies that U(c) = u, or the consumption flow chosen by

the agent in this implementation attains the same utility flow as what is chosen by the

principal in the optimal contract for all possible histories. Hence, this implementation

generates the same consumption allocation as the optimal contract.

The idea of this implementation comes from the fact that the agent’s utility

maximization problem is the dual problem of the principal’s cost minimization prob-

lem in section 1.3. Given continuation-utility v, Cn(v) is the minimum expected-cost

to finance the incentive-compatible compensation scheme. From the dual perspective,
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given expected wealth y = Cn(v), the maximum expected utility that the agent can

reach should equal v. Furthermore, the consumption allocation should be the same.

In this implementation, the state-contingent security plays a key role in pro-

viding incentives. The gap between the payoff in case of success and that in case

of failure guarantees that the agent is willing to exert effort. In fact, the required

minimum amount is the lowest level that can provide an incentive for exerting effort.

When the agent’s wealth drops to this level, the highest expected utility he can from

the contract is zero, which is the lower bound of the continuation utility.

However, in the financial market, there does not exist such an exotic asset

that has the exact same payoff structure as the state-contingent security used in this

implementation. However, the stock of a company is a reasonable proxy for this

security. Since these firms rely intensely on R&D, the performance of the employees

in the R&D units have a great impact on these firms’ performance outcomes, which

bring a close relationship between employees’ performance and the return of firms’

stocks. In particular, after each breakthrough in R&D, it always follows a notable

increase in the firm’s stock price. When there is no arrival of such good news for

a period time, its stock price tends to decline. Thus, among all available assets,

the company’s stock has the closest payoff-pattern to that of the state-contingent

security. Another feature of our implementation is the minimum amount holding

requirement that the agent has to meet until he completes the project. In the real-

world, this feature is mimicked by using employee stock-options, which has vesting

period during which the options cannot be exercised. The time restriction provides
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long-term incentives to overcome the repeated moral-hazard problem.

In the past two decades, stock-based grants, especially stock-options, have

become the most popular compensation scheme used by new-economy firms. The

similarities between this compensation scheme and our implementation of the opti-

mal contract suggest that firms are getting as close to optimality as is allowed by

the market structure. In other worlds, our implementation gives a justification for

the wide-spread use of stock-based compensation in firms that rely on R&D from a

theoretical point of view.

1.5 Conclusion

This paper constructed an optimal dynamic contract to solve the repeated

moral-hazard problem when a principal hires an agent to do a multi-stage R&D

project. The R&D process is modeled by a jump process (Poisson). In the optimal

contract, incentive is provided in two ways: (1) the agent’s continuation utility jumps

up to a higher value when he successfully completes an innovation (reward); (2) If

the agent fails to make a discovery, his continuation utility decreases continuously

over time (punishment). The evolution of the continuation utility depends on the

entire history of the innovation process up to time t, i.e. it is based on how many

innovations have been made before time t and how long it takes the agent to complete

each innovation.

We also show that the optimal contract could be implemented by a risky

security, whose return depends on the outcome of the project. The agent is required to
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hold a minimum amount of this security until he completes the whole project. In this

implementation, instead of the principal directly controlling the agent’s consumption

as in the optimal contract, the agent chooses consumption level by himself. By a

duality argument, we show that this implementation yields the same allocation as

the optimal contract. This implementation provides a theoretical justification for the

stock-based compensation used in reality.
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CHAPTER 2
DYNAMIC CONTRACTS FOR A CLASS OF MULTI-AGENT R&D

MODELS

2.1 Introduction

This paper studies the agency problem between a firm and its in-house R&D

unit. The agency problem in this specific relationship differs from the standard

principal-agent problem studied in literature in two aspects. First, R&D projects

are nowadays typically undertaken by groups of researchers. Unlike the era when

Edison invented the light bulb, and Bell telephone, R&D projects are now so com-

plicated that great technological breakthroughs are seldom obtained by individual

effort. Large efficiencies can be achieved when multiple researchers target the same

hurdle in technological development. Hence, the most innovative companies in the

world, like Apple, Google, Microsoft, IBM, and Sony, have adopted innovation-teams,

which enable them to launch innovations faster. The wide spread use of team in R&D

projects suggests that a multilateral environment is the appropriate setting to think

about the agency problem between a firm and its in-house R&D unit.

The second feature that distinguishes the agency problem in this relationship

from the standard principal-agent problem is that in some industries R&D projects

are carried out in distinct phases. In each phase, researchers are required to achieve

some specific goals, and hence the success or failure of each phase is verifiable. For

example, in the software industry, Microsoft has released a sequence of Windows

operating systems since 1985, from Windows 3.0, to Windows XP, and then to the
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most recent version, Windows 7. In each upgrade, software engineers are expected

to realize a number of new features. During the multi-stage R&D process, the firm

and its researchers interact repeated over time. Therefore, the agency problem is a

dynamic problem in nature.

These two features are captured here in an abstract principal-agent model in

continuous time, and we use recursive techniques to characterize the optimal contract

that solves the resulting repeated, multi-agent, moral-hazard problem. We show

that the optimal incentive regime is a function of how an agent’s effort interacts

with those of other agents: relative-performance evaluation is used when their efforts

are substitutes whereas joint-performance evaluation is used when their efforts are

complements. This result sheds new light on the notion of optimal incentive regimes,

an issue that has been widely discussed in multi-agent incentive problems.

Briefly, setup of the paper is as follows. A principal hires two risk-averse

agents to perform an R&D project. At any point in time, the agents can either

choose to devote effort to work or shirk; and their actions cannot be monitored by

the principal, which creates a moral-hazard problem. The R&D project has multiple

stages. The transition from one stage to the next is modeled by a Poisson-type

process, and the arrival rate is jointly determined by the effort choice of both agents.

Hence, the principal cannot treat each agent separately. To overcome the moral-

hazard problem, the principal offers a long-term contact to each agent that specifies

a history-contingent payment-scheme based on the information that the principal can

observe. In the body of the paper, we consider a situation in which the principal can



www.manaraa.com

35

observe each individual’s performance, i.e. when an innovation is made, the principal

can identify the agent who makes the discovery. In another scenario, the principal

can only observe the joint performance of the agents. The analysis of the optimal

contract for joint-performance case is a direct extension of the single-agent model

analyzed in Shan (2010a), which is included in appendix B.

The optimal compensation-scheme combines reward and punishment. In the

optimal contract, the agents’ payments decrease continuously over time if both of

them fail to make a discovery; and the agent who makes the discovery is rewarded by

an upward jump in payment.

Since the principal can observe each agent’s performance, an agent’s compen-

sation depends not only on his own performance, but may also be tied to the other

agent’s performance as well. This feature of the optimal compensation scheme in our

set-up provides new a viewpoint on optimal incentive regimes used in multi-agent

contracting problems. Broadly speaking, there are two types of incentive regimes

commonly considered in the literature. The first one is called relative-performance

evaluation, which punishes an employee when his coworkers perform well. The second

one is called joint-performance evaluation, which rewards an employee when his peers

perform well. In a static setting, Lazear and Rosen (1981), Holmstrom (1982), and

Green and Stokey (1983) give a rationale for relative-performance evaluation when

the performance measures of workers have a common noise component. Che and

Yoo (2001) argues that joint-performance evaluation could be used in a repeated set-

ting because a shirking agent is punished by the subsequent shirking of his partner,
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which provides stronger incentive for working. However, the current paper shows

that the type of compensation scheme that the principal should use depends crucially

on how the agents’ efforts interact. When their efforts are substitutes, an agent’s

action has a negative externality on the performance of his coworker, and hence

relative-performance evaluation is used in which the principal penalizes him when

his coworker succeeds. When there is complementarity between agents’ efforts, the

principal uses joint-performance evaluation, in which an agent also receives a reward

when his coworker succeeds, but the reward is lower than the reward when he makes

the discovery.

This paper is related to two strands of literature: multi-agent incentive prob-

lem and dynamic contracts. There is a large literature about incentive for multiple

agents in static setting that lasts for just one transaction (see Lazear and Rosen

(1981), Holmstrom (1982), etc.). This paper is the first paper that uses dynamic con-

tracts to analyze repeated multi-agent moral-hazard problem. Che and Yoo (2001)

and Rayo (2007) also study moral hazard in teams in a repeated setting but they

do so using relational contracts. Both of these two papers assume risk-neutrality for

the agents. Risk-neutrality implies that immediate payments and continuation pay-

ments have equivalent effects in providing incentive. This property allows them to

focus on stationary contracts. Besides using a different type of contracts, the current

paper differs from these two papers by assuming that agents are risk averse. Risk

aversion gives rise to a trade-off in the contracting problem. On the one hand, to

introduce incentives, the principal needs to change agent’s payments discontinuously
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after each success. On the other hand, risk-aversion suggests gains from consumption

smoothing. This paper describes the precise dynamic pattern of the optimal contract

in which the payment is history contingent and varies over time.

In terms of methodology, this paper follows the rich and growing literature

on dynamic moral hazard that uses recursive techniques to characterize optimal dy-

namic contracts (e.g. Green (1987), Spear and Srivastava (1987), and more recently

Sannikov (2008)). Biais, Mariotti, Rochet, and Villeneuve (2010), Myerson (2008),

and Shan (2010a) consider the dynamic moral-hazard problem in a similar continuous

time and Poisson framework. The current paper contributes this literature by look-

ing at the dynamic-contracting problem in a multi-agent setup instead of single-agent

environment.

The rest of the paper is organized as follows. Section 2.2 describes the model.

Section 2.3 analyzes the optimal contract. We provide an example in which there is

a closed-form solution in Section 2.4. Section 2.5 concludes. A discussion of joint-

performance is included in the appendix.

2.2 The Model

Time is continuous. At time 0, a principal hires two agents to perform an R&D

project. The project has N stages, which must be completed sequentially. When the

project is at stage n (0 < n ≤ N), we mean that the agents have finished the (n−1)-th

innovation and are working on the n-th innovation.

At any point in time, each agent, indexed by i (i = 1, 2), faces a binary-choice
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Table 2.1: Arrival Rates

Agent 2

Work Shirk

Agent 1 Work λ1, λ2 λ̂1, 0

Shirk 0, λ̂2 0, 0

problem of taking an action ai ∈ Ai = {0, 1}. ai = 1 means that agent i chooses

to put in effort, and ai = 0 means that he chooses to shirk. Let A = A1 × A2 and

denote a typical profile of A by a = (a1, a2). The completion of each stage of the

project is modeled by a Poisson-type process. The agents’ actions jointly determine

the Poisson arrival-rate in the following way. Each agent’s arrival rate of making a

discovery is determined by a function λi(a) : A → R+. Then, the total arrival rate

of completion of each stage is λ(a) = λ1(a) + λ2(a). For simplicity, we assume that

if agent i shirks he fails with probability 1, i.e. λi(a) = 0 when ai = 0. The following

table describes all the possible actions and the arrival rates for each action taken by

the agents: In the above table, λi is agent i’s arrival rate when both agents exert

effort, and λ̂i is his arrival rate when he exerts effort and the other agent shirks. We

assume that the probability of success increases when both agents put in effort, i.e.

λ = λ1 + λ2 > max{λ̂1, λ̂2}. To simplify notation, we use λ−i and λ̂−i to indicate

agent i’s coworker’s corresponding arrival rates from now on.



www.manaraa.com

39

Effort-choice is private information, and thus cannot be observed by the princi-

pal or the other agent. However, the principal can observe exactly when each stage of

the R&D project was completed. Moreover, he can also identify the agent who made

the discovery. Let H t summarize all the public information up to time t. Then, H t

includes information about how many innovations were made before time t, the exact

time when each innovation was made, and the identity of the agent who completed

that innovation.

We assume that the completion of the project is sufficiently valuable to the

principal that he always wants to induce both agents to work. Hence, the principal’s

problem is to minimize the cost of providing incentives. At time 0, the principal offers

each agent a contract that specifies a flow of consumption {cti(H t), 0 ≤ t < +∞}

(i = 1, 2), based on the principal’s observation of their performance. Let T denote

the stochastic stopping time when the last stage of the project is completed, which is

endogenously determined by the agents’ actions. Note that the history of H t will not

get updated after the project is completed, which implies that agents’ payment-flow is

constant after the completion of the project. Therefore, the principal can equivalently

give the agents a lump-sum consumption transfer at T .

Each agent’s utility is determined by his consumption flow and his effort. For

simplicity, we assume that the two agents have the same utility function, which is

further assumed to have a separable form U(ci) − L(ai), where U(ci) is the utility

from consumption and L(ai) is the disutility of exerting effort. We assume that

U : [0,+∞) → [0,+∞) is an increasing, concave, and C2 function with the property
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that U ′(c) → +∞ as c → 0. We also assume that the disutility of putting in effort

equals some l > 0 and the disutility of shirking equals zero, i.e. L(1) = l and L(0) = 0.

Given a contract, agent i’s objective is to choose an effort process {ati(H t), 0 ≤

t < ∞} to maximize his total expected utility. Thus, agent i’s problem is

max
{ati,0≤t<∞}

E

[ ∫ T

0

re−rt(U(cti)− L(ati))dt+ e−rTU(cTi )

]
,

where r is the discount rate. Since agent i’s consumption-flow is constant after time

T when the project is completed, his total discounted utility at time T equals U(cTi ).

Moveover, the agents have a reservation-utility v0. If the maximum expected utility

they can get from the contract is less than v0, then they will reject the principal’s

offer.

For simplicity, we assume that the agents and the principal have the same

discount rate. Hence, the principal’s expected cost is given by

E

[ ∫ T

0

re−rt(ct1 + ct2)dt+ e−rT (cT1 + cT2 )

]
.

The principal’s objective is to minimize the expected cost by choosing an

incentive-compatible payment scheme subject to delivering the agents the requisite

initial value of expected utility v0. Therefore, the principal’s problem is

min
{ct1,ct2,0≤t<+∞}

E

[ ∫ T

0

re−rt(ct1 + ct2)dt+ e−rT (cT1 + cT2 )

]
s.t.

E

[ ∫ T

0

re−rt(U(cti)− l)dt+ e−rTU(cTi )

]
≥ v0

for i = 1, 2. We assume that the agents play a noncooperative game. Therefore,

incentive compatibility in this context means that, at any point in time, each agent
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is willing to exert effort conditional on the other agent is putting in effort, and that

it is Nash equilibrium to put in effort.

Finally, to simplify the analysis, we could recast the problem as one where

the principal directly transfers utility to the agents instead of consumption. In the

transformed problem, the principal chooses a stream of utility transfers {ut
i(H

t), 0 ≤

t < +∞} to minimize the expected cost of implementing positive effort. Then, the

principal’s problem becomes

min
{ut

1,u
t
2,0≤t<+∞}

E

[ ∫ T

0

re−rt(S(ut
1) + S(ut

2))dt+ e−rT (S(uT
1 ) + S(uT

2 ))

]

s.t.

E

[ ∫ T

0

re−rt(ut
i − l)dt+ e−rTuT

i

]
≥ v0,

where S(u) = U−1(u), which is the principal’s cost of providing the agent with utility

u. It can be shown that S is a decreasing and strictly convex function. Moreover,

S(0) = 0 and S ′(0) = 0.

2.3 Optimal Contract

In this section, we derive the optimal contract of each agent i (i = 1, 2). The

contract is written in terms of his continuation-utility vi, which is the total utility that

the principal expects the agent to derive at any time t. Given vi, agent i’s contract

specifies his utility-flow ui, his continuation-utility v̄i,i if he makes a discovery, his

continuation-utility v̄i,−i if his coworker makes a discovery, and the law of motion of

his continuation utility if both agents fail.
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Although our model is a continuous-time model, it can be interpreted as the

limit of discrete-time models in which each period lasts ∆t. In the discrete-time

approximation, for any given continuation-utility vi, the principal needs to decide

{ui, vi, v̄i,i, v̄i,−i} in each period:

• ui is agent i’s transferred-utility flow in the current period.

• vi is his next-period continuation utility if both agents fails.

• v̄i,i is his next-period continuation utility if he successes.

• v̄i,−i is his next-period continuation utility if his coworker successes.

First of all, the contract should indeed provide agent i with continuation-utility

vi. Hence, the contract should satisfy the following promise-keeping condition:

r(ui − l)∆t+ e−r∆t((1− λ∆t)vi + λi∆tv̄i,i + λ−i∆tv̄i,−i) = vi.

The left-hand side of the promise-keeping condition is agent i’s expected utility from

putting in effort when the other agent exerts effort. The expected utility should equal

the promised level vi. Moreover, the contract should provide an incentive to agent i

to exert effort conditional on the other agent putting in effort. Hence, the contract

should also satisfy the following Nash-Incentive-Compatibility (NIC) condition:

r(ui − l)∆t+ e−r∆t((1− λ∆t)vi + λi∆tv̄i,i + λ−i∆tv̄i,−i)

≥ rui∆t+ e−r∆t((1− λ̂−i∆t)vi + λ̂−i∆tv̄i,−i).
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where the right-hand side agent i’s expected utility from shirking when the other

agent exerts effort.

Let Wn(v1, v2) be the principal’s minimum cost of delivering the continuation-

utility pair (v1, v2) when the project is at stage n. In recursive form, Wn satisfies the

following Bellman equation

Wn(v1, v2) = min
u1,u2;v1,v2;v̄1,1,v̄1,2;v̄2,1,v̄2,2

r(S(u1) + S(u2))∆t

+ e−r∆t((1− λ∆t)Wn(v1, v2) + λ1∆tWn+1(v̄1,1, v̄2,1) + λ2∆tWn+1(v̄1,2, v̄2,2))

s.t.

r(ui − l)∆t+ e−r∆t((1− λ∆t)vi + λi∆tv̄i,i + λ−i∆tv̄i,−i) = vi,

r(ui − l)∆t+ e−r∆t((1− λ∆t)vi + λi∆tv̄i,i + λ−i∆tv̄i,−i)

≥ rui∆t+ e−r∆t((1− λ̂−i∆t)vi + λ̂−i∆tv̄i,−i),

for i = 1, 2.

When the last-stage innovation is completed, both agents receive a lump-

sum payment, and the principal’s cost of providing these payments is given by

WN+1(v1, v2) = S(v1) + S(v2). Note that agent i’s promise-keeping condition and

NIC condition only involve (ui, vi, v̄i,i, v̄i,−i) and do not depend on the other agent’s

policy variables. This property implies that the cost function of the last stage is

separable: WN(v1, v2) = C1,N(v1) + C2,N(v2), where Ci,N is the principal’s cost func-

tion of providing agent i with continuation utility vi when the project is at stage N .

Then, using the argument again, the result that WN is separable implies that WN−1



www.manaraa.com

44

is also separable. Finally, we could conclude that the cost function of every stage is

separable: Wn(v1, v2) = C1,n(v1)+C2,n(v2), where Ci,n satisfies the following Bellman

equation

Ci,n(vi) =

min
ui,vi,v̄i,i,v̄i,−i

rS(ui)∆t+e−r∆t((1−λ∆t)Ci,n(vi)+λi∆tCi,n+1(v̄i,i)+λ−i∆tCi,n+1(v̄i,−i))

s.t.

r(ui − l)∆t+ e−r∆t((1− λ∆t)vi + λi∆tv̄i,i + λ−i∆tv̄i,−i) = vi,

r(ui − l)∆t+ e−r∆t((1− λ∆t)vi + λi∆tv̄i,i + λ−i∆tv̄i,−i)

≥ rui∆t+ e−r∆t((1− λ̂−i∆t)vi + λ̂−i∆tv̄i,−i),

for i = 1, 2. Hence, we could decentralize the two-agent problem and focus on the

contract for each agent i.

Since the continuous-time model can be interpreted as the limit of the discrete-

time approximation, multiplying both sides of the Bellman equation and the promise-

keeping condition by (1+r∆t)/∆t and letting ∆t converge to 0, we derive the following

Hamilton-Jacobi-Bellman (HJB) equation in continuous time 1

rCi,n(vi) = min
ui,v̄i,i,v̄i,−i

rS(ui) + C ′
i,n(vi)v̇i − λCi,n(vi) + λiCi,n+1(v̄i,i) + λ−iCi,n+1(v̄i,−i)

1In this paper, we derive the HJB equation, evolution of continuation utility, and the NIC
condition in continuous time by considering the limit of a discrete-time approximation. We
can also derive these formally using stochastic-calculus techniques (see Biais et al. (2010)).
The reason we choose this method is because it is more intuitive and generates the same
result.
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s.t.

v̇i = rvi − r(ui − l)− λi(v̄i,i − vi)− λ−i(v̄i,−i − vi),

λi(v̄i,i − vi) + (λ−i − λ̂−i)(v̄i,−i − vi) ≥ rl (NIC).

In continuous time, the promise-keeping condition becomes the evolution of

agent i’s continuation utility. In the discrete-time model, after choosing (ui, v̄i,i, v̄i,−i),

vi is given by the promise-keeping condition. When ∆t converges to 0, vi converges to

vi. Hence, the continuation utility in the case of failure changes smoothly, and its rate

of change is determined by (ui, v̄i,i, v̄i,−i). The continuation utility can be explained

as the value that the principal owes the agent: it grows at the discount-rate r; and

it falls due to the flow of repayment r(ui − l) , the expected repayment λi(v̄i,i − vi)

if agent i completes the innovation, and the expected repayment λ−i(v̄i,−i − vi) if his

coworkers completes the innovation.

By putting in effort, agent i increase his arrival rate of success from 0 to λi

and changes his coworker’s arrival rate from λ̂−i to λ−i. Therefore, the left-hand side

of the NIC condition is his benefit of putting in effort. The right-hand side is his cost

of putting in effort. The NIC condition indicates that, to induce agent i to work, the

contract should offer him a higher benefit than the cost of working.

The sign of (λ−i − λ̂−i) in the NIC condition has very important implications

on the optimal contract. Recall that λ−i is the arrival rate of the event that agent

i’s coworker makes a discovery when both agents put in effort, and λ̂−i is the arrival

rate of the event that agent i’s coworker makes a discovery when agent i shirks

but his coworker exerts effort. When λ−i = λ̂−i, the efforts of agent i and the
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efforts of his coworker are independent because agent i’s action does not affect his

coworker’s performance. When λ−i < λ̂−i, their efforts are substitutes. When agent

i chooses to exert effort, this action decreases his coworker’s arrival rate from λ̂−i to

λ−i. Thus, agent i’s effort has negative externality on his coworker’s performance.

When λ−i > λ̂−i, their efforts are complements. When agent i chooses to exert effort,

this action increases his coworker’s arrival rate from λ̂−i to λ−i. Thus, agent i’s effort

has positive externality on his coworker’s performance.

Note that the continuation utility cannot be less than 0, because the agents

can guarantee a utility level of 0 by not putting in any effort. Therefore, a negative

continuation utility is not implementable.

In the HJB equation, to solve the stage-n problem, we need to know the

functional form of Ci,n+1. Observe that when the last-stage innovation is completed,

the cost of providing continuation-utility vi is given by S(vi), which is known. Hence,

we solve the principal’s problem by backward induction. Our plan is the following.

First, we assume that Ci,n+1 satisfies the following assumption

Assumption A: Ci,n+1 is a C2 function. Its derivative, C ′
i,n+1, is a continuous

and strictly increasing function. Moreover, C ′
i,n+1 satisfies:

1. If λ−i ≤ λ̂−i, then C ′
i,n+1(vi) ≥ S ′(vi) for all vi > 0, and C ′

i,n+1(0) = S ′(0) = 0.

2. If λ−i > λ̂−i, then C ′
i,n+1(vi) > S ′(vi − λ̂−il

λ−λ̂−i
) for all vi ≥ λ̂−il

λ−λ̂−i
.

Then, we derive Ci,n from the HJB equation given Ci,n+1, and show that Ci,n also

satisfies Assumption A. It is straightforward to check that S satisfies Assumption A.
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This result allows us to keep doing the backward-induction exercise until we solve the

entire multi-stage problem.

To characterize the solution of the HJB equation, we do a diagrammatic anal-

ysis in the vi-C
′
i,n(vi) plane. Given a point (vi, C

′
i,n(vi)) in this plane, (ui, v̄i,i, v̄i,−i)

are determined by the following Kuhn-Tucker conditions:

S ′(ui)− C ′
i,n(vi) + η1 = 0, (2.1)

λiC
′
i,n+1(v̄i,i)− λiC

′
i,n(vi) + γλi + η2 = 0, (2.2)

λ−iC
′
i,n+1(v̄i,−i)− λ−iC

′
i,n(vi) + γ(λ−i − λ̂−i) + η3 = 0, (2.3)

λi(v̄i,i − vi) + (λ−i − λ̂−i)(v̄i,−i − vi)− rl ≥ 0, (2.4)

ui ≥ 0, (2.5)

v̄i,i ≥ 0, (2.6)

v̄i,−i ≥ 0, (2.7)

γ(λi(v̄i,i − vi) + (λ−i − λ̂−i)(v̄i,−i − vi)− rl) = 0, (2.8)

η1ui = 0, (2.9)

η2v̄i,i = 0, (2.10)

η3v̄i,−i = 0, (2.11)

where γ, η1 , η2 and η3 are Lagrangian multipliers and γ, η1, η2, η3 ≤ 0. Equation (2.1)-

(2.3) are first-order conditions, (2.4) is the NIC condition, and inequality (2.5)-(2.7)

imply that utility flow and continuation utility should be nonnegative.

To do the phase-diagram analysis, we need to determine the dynamics of vi

and C ′
i,n(vi) at any point in the vi-C

′
i,n(vi) plane, which are determined by the sign
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of dC ′
i,n(vi)/dt and dvi/dt. The dynamics of vi is given by

dvi
dt

= rvi − r(ui − l)− λi(v̄i,i − vi)− λ−i(v̄i,−i − vi).

Using the envelope theorem, we can derive the expression for dC ′
i,n(vi)/dt from the

HJB equation, which is

dC ′
i,n(vi)

dt
= γ(λ− λ̂−i).

Therefore, given a point in the vi-C
′
i,n(vi) plane, the values of (ui, v̄i,i, v̄i,−i, γ)

can be derived from Kuhn-Tucker conditions, which in turn determine the values of

dvi/dt and dC ′
i,n(vi)/dt. Finally, the sign of dvi/dt and dC ′

i,n(vi)/dt determine the

dynamics at this point. Moreover, fixing vi, the value of dvi/dt could be treated as

a function of C ′
i,n(vi) and define it by f(C ′

i,n(vi)). The following six lemmas analyze

the dynamics.

Lemma 2.3.1. If C ′
i,n(vi) ≥ C ′

i,n+1(vi+
rl

λ−λ̂−i
), then the NIC condition is non-binding.

The dynamics of C ′
i,n(vi) and vi satisfy

dC ′
i,n(vi)

dt
= 0,

dvi
dt

< 0.

Lemma 2.3.2. If C ′
i,n(vi) < C ′

i,n+1(vi +
rl

λ−λ̂−i
), then the NIC condition is binding.

The dynamics C ′
i,n(vi) satisfies

dC ′
i,n(vi)

dt
< 0.

Fixing vi, f(C ′
i,n(vi)) is a continuous function of C ′

i,n(vi), which is decreasing in

C ′
n(vi).
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For the case in which λ−i ≤ λ̂−i, we have

Lemma 2.3.3. If C ′
i,n(vi) = S ′(vi), then dvi/dt ≥ 0 when vi > 0, and dvi/dt = 0

when vi = 0.

Lemma 2.3.4. The dvi/dt = 0 locus is a continuous curve that locates below the

C ′
i,n(vi) = C ′

i,n+1(vi+
rl

λ−λ̂−i
) locus and above the C ′

i,n(vi) = S ′(vi) locus and intersects

the C ′
i,n(vi) = S ′(vi) locus at the origin.

For the case in which λ−i > λ̂−i, we have

Lemma 2.3.5. If C ′
i,n(vi) = S ′(vi − λ̂−il

λ−λ̂−i
), then dvi/dt > 0.

Lemma 2.3.6. The dvi/dt = 0 locus is a continuous curve that locates below the

C ′
i,n(vi) = C ′

i,n+1(vi +
rl

λ−λ̂−i
) locus and above the C ′

i,n(vi) = S ′(vi − λ̂−il

λ−λ̂−i
) locus.

These lemmas characterize the dynamics of vi and C ′
i,n(vi) in the vi-C

′
i,n(vi)

plane. The dvi/dt = 0 locus determines the dynamics of vi: vi is decreasing over

time above it and increasing over time below it. The C ′
i,n(vi) = C ′

i,n+1(vi +
rl

λ−λ̂−i
)

locus determines the dynamics of C ′
i,n(vi): C

′
i,n(vi) is constant over time above it and

decreasing over time below it (Figure 2.1 and Figure 2.2).

The next step is to find the optimal path in these phase diagrams. First

consider the phase diagram for the case in which λ−i ≤ λ̂−i (Figure 2.1). From the

theorem regarding the existence of a solution to a differential equation, there is an

unique path from any vi > 0 to the origin (Path 1 in Figure 2.1). First, any path on

which the state variable vi diverges to infinity could be ruled out. This contains the
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0
vi

C
i
֒n

(v
i
)

 

 
dvi

dt
= 0

C
i֒n

(vi) = C
i֒n+1(vi + rl

λ−λ̂
−i

)

C
i֒n

(vi) = S (vi)

Path 1

Path 2

Path 3

Figure 2.1: Phase Diagram (λ−i ≤ λ̂−i)

area below Path 1. In the area above Path 1, the continuation-utility vi is decreasing

over time. When vi hits the lower bound 0, it cannot decrease any further. Thus,

we must have dvi/dt ≥ 0 at vi = 0. This condition rules out any path above Path 1,

because dvi/dt < 0 at vi = 0 on these paths. Then, Path 1 is the only candidate path

left in the phase diagram, and hence it is the optimal path that we are looking for.

The final step is to pin down the boundary condition at vi = 0. At the lower-bound,

we have ui = v̄i,−i = 0 and v̄i,i =
rl
λi
. Then,

dvi
dt

= rvi − r(ui − l)− λi(v̄i,i − vi)− λ−i(v̄i,−i − vi) = 0.

Therefore, when agent i’s continuation utility reaches 0, his continuation utility and

transferred-utility flow remain at 0 until he makes a discovery. To force agent i to put
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in positive effort, the principal rewards him by increasing his continuation utility to rl
λi

when he makes a discovery. We also can pin down the following boundary condition

at vi = 0 from the HJB equation

Ci,n(0) =
λiCi,n+1(

rl
λi
) + λ−iCi,n+1(0)

r + λ
.

The optimal path and the boundary condition together determine the solution of the

HJB equation. The phase-diagram analysis for the case in which λ−i > λ̂−i is similar

(Figure 2.2).

0

C
i
֒n

(v
i
)

 

 
dvi

dt
= 0

C
i֒n

(vi) = C
i֒n+1(vi +

rl

λ − λ̂
−i

)

C
i֒n

(vi) = S (vi −
λ̂
−il

λ−λ̂
−i

)

Optimal Path

λ̂
−il

λ−λ̂
−i

vi

Figure 2.2: Phase Diagram (λ−i > λ̂−i)

Finally, from the phase-diagram, when λ−i ≤ λ̂−i, the optimal path is located
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above the C ′
i,n(vi) = S ′(vi) locus and intersects the C ′

i,n(vi) = S ′(vi) locus at the origin;

when λ−i > λ̂−i, the optimal path is located above the C ′
i,n(vi) = S ′(vi− λ̂−il

λ−λ̂−i
) locus.

Therefore, we have the following Lemma.

Lemma 2.3.7. 1. If λ−i ≤ λ̂−i, then C ′
i,n(vi) ≥ S ′(vi) for all vi > 0, and C ′

i,n(0) =

S ′(0) = 0.

2. If λ−i > λ̂−i, then C ′
i,n(vi) > S ′(vi − λ̂−il

λ−λ̂−i
) for all vi ≥ λ̂−il

λ−λ̂−i
.

Lemma 2.3.7 indicates that, if Ci,n+1 satisfies Assumption A, Ci,n also satis-

fies Assumption A. This result completes the final step of the backward-induction

argument.

The following proposition summarizes the properties of the optimal dynamic

contract for agent i.

Proposition 2.3.8. The contract that minimizes the principal’s cost takes the fol-

lowing form:

1. The principal’s expected cost of delivering continuation utility vi at stage n is

given by a convex function Ci,n(vi) that solves the HJB equation and satisfies

the boundary condition

Ci,n(0) =
λiCi,n+1(

rl
λi
) + λ−iCi,n+1(0)

r + λ
.

2. If agent i completes the innovation, then his utility flow jumps up.

3. If agent i’s coworker completes the innovation, then: 1) his utility flow does not



www.manaraa.com

53

change if λ−i = λ̂−i; 2) his utility flow drops down if λ−i < λ̂−i; 3) his utility

flow jumps up if λ−i > λ̂−i.

4. If both agents fail to complete the project, agent i’s continuation-utility vi and

transferred utility ui are decreasing over time and vi asymptotically goes to 0.

In the optimal contract, the principal rewards agent i when he makes an

innovation by increasing his utility flow. In our setup, agent i has a chance to make

a discovery only when he puts in effort. Thus, a discovery by him indicates that he

is exerting effort, and therefore he should be rewarded.

Part 3 of Proposition 2.3.8 is the main result of this paper, which demonstrates

the way in which the optimal incentive regime is a function of how agents’ efforts in-

teract with one another. When λ−i < λ̂−i, the principal uses relative-performance

evaluation in which he punishes agent i by decreasing his payment-flow when his

coworker makes a discovery. The reason for using relative-performance evaluation is

the following. In this case, agent i’s effort has a negative externality on his coworker’s

performance. Thus, when his coworker makes a discovery, this event provides sug-

gestive information that agent i is shirking. Therefore, the principal should punish

agent i for not putting in effort.

On the contrary, when λ−i > λ̂−i, agent i’s effort has a positive externality

on his coworker’s performance. The event that his coworker achieves a success gives

the principal a hint that agent i is also exerting effort. Therefore, the principal uses

joint-performance evaluation in which he rewards agent i by an upward jump in his

payment-flow when his coworker makes a discovery.
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When λ−i = λ̂−i, since agent i’s action does not affect his coworker’s per-

formance, the event that his coworker makes a discovery does not offer any useful

information about whether agent i puts in effort or not. Hence, agent i’s utility flow

does not change when his coworker makes a discovery.

2.4 Example

In this section, we provide an example for which we obtain a closed-form

solution. In fact, in this example, we can handle the case in which the project

has infinitely many stages. When the project has infinite stages, principal’s cost

function W (v1, v2) no longer depends the stage level. Similarly, since agent i’s NIC

condition and evolution of continuation utility does not relate to the other agent’s

policy variables, the cost function has a separated form: W (v1, v2) = C1(v1)+C2(v2),

where Ci(vi) is the principals minimum cost of providing agent i with continuation-

utility vi. The optimal contract for agent i is characterized by the following HJB

equation

rCi(vi) = min
ui,v̄i,i,v̄i,−i

rS(ui) + C ′
i(vi)v̇i − λCi(vi) + λiCi(v̄i,i) + λ−iCi(v̄i,−i)

s.t.

v̇i = rvi − r(ui − l)− λi(v̄i,i − vi)− λ−i(v̄i,−i − vi),

λi(v̄i,i − vi) + (λ−i − λ̂−i)(v̄i,−i − vi) ≥ rl.

We assume that the utility function is logarithmic U(ci) = log ci. We solve this

HJB equation by guess-and-verify. First, note that, for logarithmic utility function,

the cost of providing transferred utility-flow ui is S(ui) = eui . Inspired by this
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functional form, we make a guess that the cost function takes the form qevi (q > 0)—

a constant times evi . Then, using this guess, we solve the minimization problem on

the right-hand side of the HJB equation. If the right-hand side also takes the form

of a constant times evi , then this guess is verified, and we can pin down the constant

q from the HJB equation.

Taking Ci(vi) = qevi into the right-hand side of the HJB equation, we have

RHS = min
ui,v̄i,i,v̄i,−i

reui + qevi v̇i − λqevi + λiqe
v̄i,i + λ−iqe

v̄i,−i

s.t.

v̇i = rvi − r(ui − l)− λi(v̄i,i − vi)− λ−i(v̄i,−i − vi),

λi(v̄i,i − vi) + (λ−i − λ̂−i)(v̄i,−i − vi) ≥ rl.

Utility-flow ui satisfies the first-order condition S ′(ui) = C ′
i(vi). Therefore,

eui = qevi ,

which implies ui = vi + log q.

The NIC condition must be blinding, otherwise first-order conditions imply

that v̄i,i = v̄i,−i = vi, which violates the NIC condition. Thus, v̄i,i and v̄i,−i are

determined by the following system

λiqe
v̄i,i − λiqe

vi + γλi = 0 (2.12)

λ−iqe
v̄i,−i − λ−iqe

vi + γ(λ−i − λ̂−i) = 0 (2.13)

λi(v̄i,i − vi) + (λ−i − λ̂−i)(v̄i,−i − vi)− rl = 0 (2.14)
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where (2.12) and (2.13) are first-order conditions, and (2.14) is the NIC condition. γ,

the Lagrangian multiplier, satisfies γ < 0.

If λ−i = λ̂−i, then it follows from (2.13) and (2.14) that

v̄i,i = vi +
rl

λi

,

v̄i,−i = vi.

If λ−i ̸= λ̂−i, define ∆vi,i = v̄i,i − vi and ∆vi,−i = v̄i,−i − vi. Combining (2.12)

and (2.13), we could get

e∆vi,i − 1

e∆vi,−i − 1
=

λ−i

λ−i − λ̂−i

. (2.15)

Equation (2.14) could be rewritten as

λi∆vi,i + (λ−i − λ̂−i)∆vi,−i − rl = 0. (2.16)

Then, we can pin down ∆vi,i and ∆vi,−i by solving (2.15) and (2.16). Note that

neither (2.15) nor (2.16) contains vi, which implies that both ∆vi,i and ∆vi,−i depend

only on the parameters of the model and are independent of the state-variable vi.

Consequently, in both cases, we have v̄i,i = vi + ∆vi,i and v̄i,i = vi + ∆vi,−i,

where both ∆vi,i and ∆vi,−i are independent of vi.

Taking the solution for ui, v̄i,i and v̄i,−i into the right-hand side of the HJB

equation, it becomes

RHS = revi+log q + qevi(−r log q − λ̂−i∆vi,−i)− λqevi + λiqe
vi+∆vi,i + λ−iqe

vi+∆vi,−i

= (rq + q(−r log q − λ̂−i∆vi,−i)− λq + λiqe
∆vi,i + λ−iqe

∆vi,−i)evi
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This result verifies that the right-hand side also takes the form of a constant times

evi . Finally, letting the left-hand side of the HJB equation equal to the right-hand

side, we have

rq = rq + q(−r log q − λ̂−i∆vi,−i)− λq + λiqe
∆vi,i + λ−iqe

∆vi,−i .

Solving q, we get

q = exp

(
λie

∆vi,i + λ−ie
∆vi,−i − λ− λ̂−i∆vi,−i

r

)
.

The above computation provides the solution to the HJB equation. Next,

we derive some properties of the optimal contract implied by this solution. First, it

follows from from (2.12) that v̄i,i > vi, which means that the principal rewards agent

i by an upward jump in continuation utility when he makes a discovery. From (2.13),

we have

v̄i,−i



< vi, if λ−i < λ̂−i;

= vi, if λ−i = λ̂−i;

> vi, if λ−i > λ̂−i.

Thus, when λ−i = λ̂−i, agent i’s continuation utility does not depends on the other

agent’s performance; when λ−i < λ̂−i, agent i is punished by a downward jump in

continuation utility when his coworker succeeds (relative-performance evaluation);

and when λ−i > λ̂−i agent i is rewarded by an upward jump in continuation utility

when his coworker succeeds (joint-performance evaluation). Finally, the evolution of
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continuation utility in case of failure follows

v̇i = rvi − r(ui − l)− λi(v̄i,i − vi)− λ−i(v̄i,−i − vi)

= r(vi − ui)− λ̂−i(v̄i,−i − vi)

= λ− λie
∆vi,i − λ−ie

∆vi,−i

= λi(1− e∆vi,i) + λ−i(1− e∆vi,−i)

= (λ− λ̂−i)(1− e∆vi,i)

< 0,

which implies that agent i’s continuation utility decreases over time when both

agents fail. Since ui = vi + log q, the utility-flow ui has the same dynamics as the

continuation-utility vi. The properties of the optimal contract are summarized in the

following proposition

Proposition 2.4.1. The optimal contract has the following properties:

1. If agent i completes the innovation, then his utility flow jumps up.

2. If agent i’s coworker completes the innovation, then: 1) agent i’s utility flow

does not change if λ−i = λ̂−i; 2) his utility flow drops down if λ−i < λ̂−i; 3) his

utility flow jumps up if λ−i > λ̂−i.

3. If both agents fail to complete the project, agent i’s continuation-utility vi and

transferred utility ui decrease over time.

Observe that all the properties are consistent with those of the optimal contract

discussed in Section 2.3, and the intuition behind these results are also the same.
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2.5 Conclusion

This paper studies the agency problem between a firm and its in-house R&D

unit. The problem is analyzed in a set-up that captures two distinct aspects, namely

the multilateral feature and the multi-stage feature, in this specific agency relation-

ship. We use recursive techniques to characterize the dynamic contract that overcome

the multi-agent repeated moral-hazard problem. In the optimal contract, the princi-

pal provides incentive combining punishment and reward. He decreases every agent’s

payment if no discovery is made and rewards an agent by an upward jump in pay-

ment when he makes a discovery. Moreover, agents’ payments not only depend on

their own performances, but also may be tied to their peers’ performances as well.

Relative-performance evaluation is used if their efforts are substitutes whereas joint-

performance evaluation is used if their efforts are complements.
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APPENDIX A
APPENDIX FOR CHAPTER 1

A.1 Proofs

Proof of Lemma 1.3.1

Proof. In the HJB equation, the principal chooses v̄ to minimize −C ′(v)v̄ + S(v̄)

subject to the incentive-compatibility constraint v̄ ≥ v+ rl
λ
. By assumption, −C ′(v)v̄+

S(v̄) is a convex and twice-differentiable function of v̄. The unconstraint minimum is

reached at v̄′ that satisfies the first order condition C ′(v) = S ′(v̄′). If C ′(v) > S ′(v +

rl
λ
), then S(v̄′) > S(v + rl

λ
), which implies that v̄′ > v + rl

λ
. Thus, the optimal choice

of v̄ is v̄′ and the incentive-compatibility constraint is not binding. C ′(v) ≤ S ′(v+ rl
λ
)

implies that v̄′ ≤ v + rl
λ
. In this case, the optimal choice of v̄ is v + rl

λ
and the

incentive-compatibility constraint binds.

Proof of Lemma 1.3.2

Proof. By Lemma 1.3.1, the incentive-compatibility constraint binds in this case.

Using the equation v̄ = v+ rl
λ
in (1.3), the rate of change of v becomes dv

dt
= r(v−u).

Therefore, the HJB equation is

rC(v) = min
u

rS(u) + C ′(v)(r(v − u)) + λ(S(v +
rl

λ
)− C(v)).

From the envelope theorem,

(r + λ)C ′(v) = rC ′(v) + λS ′(v +
rl

λ
) + C ′′(v)

dv

dt
.
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Thus,

dC ′(v)

dt
= λ(C ′(v)− S ′(v +

rl

λ
)).

Since C ′(v) < S ′(v + rl
λ
), it follows that dC′(v)

dt
< 0.

As dv
dt

= r(v − u), the sign of dv
dt

is determined by the values of v and u.

Note that u is chosen to minimize S(u)− C ′(v)u, which is a strictly convex function

of u. The first order condition implies that C ′(v) = S ′(u). If C ′(v) = S ′(v), then

S ′(v) = S ′(u). Since S(v) is strictly convex, we have v = u and dv
dt

= r(v − u) = 0.

Similarly, C ′(v) > S ′(v) implies that dv
dt

< 0 and C ′(v) < S ′(v) implies that dv
dt

> 0

Proof of Lemma 1.3.3

Proof. In this case, v̄ is unconstrained optimal and v̄ ≥ v + rl
λ
. Taking (1.3) into the

HJB equation,

rC(v) = min
u,v̄

rS(u) + C ′(v)(rv − r(u− l)− λ(v̄ − v)) + λ(S(v̄)− C(v)).

From envelope theorem

(r + λ)C ′(v) = (r + λ)C ′(v) + C ′′(v)
dv

dt
.

Therefore,

dC ′(v)

dt
= 0.

For the dynamics of v, note that in this case

dv

dt
= rv − r(u− l)− λ(v̄ − v)

= r(v − u) + (rl + λv − λv̄).
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Since v̄ ≥ v + rl
λ
, the second term is non-positive. For the first term, u is

determined by the first order condition C ′(v) = S ′(u). Since C ′(v) ≥ S ′(v + rl
λ
), we

have S ′(u) ≥ S ′(v + rl
λ
), which implies that u ≥ v + rl

λ
> v. Thus, the first term is

strictly negative. It follows that dv
dt

< 0.

Proof of Proposition 1.3.6

Proof. The proofs for part 1 to part 5 are similar to the proofs for Proposition 1.3.4.

Hence, we only prove part 6 of Proposition 1.3.6. We prove this by backward induc-

tion. From Proposition 1.3.4, we have that CN(v) > CN+1(v) = S(v) for all v, and

C ′
N(v) > C ′

N+1(v) = S ′(v) for all v > 0. Suppose these two inequalities hold for stage

n+ 1. We want to show that they also hold for stage n.

Note that on the optimal path, we have

dC ′
n(v)

dt
= λ(C ′

n(v)− C ′
n+1(v +

rl

λ
)),

and

dv

dt
= r(v − u).

Hence, we have

dC ′
n(v)

dv
=

λ(C ′
n(v)− C ′

n+1(v +
rl
λ
))

r(v − u)
,

where u satisfies C ′
n(v) = S ′(u).

Suppose C ′
n(v

∗) = C ′
n+1(v

∗) for some v∗ ≥ 0. Then, we have

dC ′
n(v

∗)

dv∗
=

λ(C ′
n(v

∗)− C ′
n+1(v

∗ + rl
λ
))

r(v∗ − u∗)
>

λ(C ′
n+1(v

∗)− C ′
n+2(v

∗ + rl
λ
))

r(v∗ − u∗)
=

dC ′
n+1(v

∗)

dv∗
,
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where S ′(u∗) = C ′
n(v

∗) = C ′
n+1(v

∗) and the inequality follows from C ′
n+1(v

∗ + rl
λ
) >

C ′
n+2(v

∗ + rl
λ
).

This result implies that there exists at most one v∗ such that C ′
n(v

∗) =

C ′
n+1(v

∗). Moreover, C ′
n(v) < C ′

n+1(v) for all v < v∗, and C ′
n(v) > C ′

n+1(v) for

all v > v∗. Since C ′
n(0) = C ′

n+1(0) = 0, it implies that C ′
n(v) > C ′

n+1(v) for all v > 0.

Finally, we have

Cn(0) =
λCn+1(

rl
λ
)

r + λ
>

λCn+2(
rl
λ
)

r + λ
= Cn+1(0).

Then, C ′
n(v) > C ′

n+1(v) for all v > 0 implies that Cn(v) > Cn+1(v) for all

v > 0. By backward induction, we can show that, at any stage n, Cn(v) > Cn+1(v)

for all v ≥ 0, and C ′
n(v) > C ′

n+1(v) for all v > 0.

Proof of Proposition 1.4.1

Proof. We first verify that Vn(y) = C−1
n (y) solves the HJB equation under the con-

ditions in Proposition 1.4.1. Then,we show that this implementation generates the

same consumption allocation as the optimal contract. First note that

rl − λ(Vn+1(Yn+1(y))− Vn(y)) = rl − λ(Vn+1(Cn+1(C
−1
n (y) +

rl

λ
))− Vn(y))

= rl − λ(C−1
n (y) +

rl

λ
− C−1

n (y))

= 0.

This result implies that for any consumption flow c, the agent is indifferent between



www.manaraa.com

64

exerting effort and shirking. Thus, we have

RHS = rU(c) + V ′
n(y)(ry − rc− λ(Cn+1(C

−1
n (y) +

rl

λ
)− y))

= rU(c) +
(r + λ)y − rc− λCn+1(C

−1
n (y) + rl

λ
)

C ′
n(C

−1
n (y))

,

where c is determined by the first-order condition U ′(c) = 1
C′

n(C
−1
n (y))

.

Since Cn(v) satisfies the following differential equation

(r + λ)Cn(v) = rS(u) + C ′
n(v)(r(v − u)) + λCn+1(v +

rl

λ
),

then

1

C ′
n(v)

=
r(v − u)

(r + λ)Cn(v)− rS(u)− λCn+1(v +
rl
λ
)
,

where u satisfies S ′(u) = C ′
n(v). Taking v = C−1

n (y) into the equation above, we get

1

C ′
n(C

−1
n (y))

=
r(C−1

n (y)− u)

(r + λ)Cn(C−1
n (y))− rS(u)− λCn+1(C−1

n (y) + rl
λ
)

=
r(C−1

n (y)− u)

(r + λ)y − rS(u)− λCn+1(C−1
n (y) + rl

λ
)
,

where S ′(u) = C ′
n(C

−1
n (y)). Since S(u) = U−1(u), it follows that 1

U ′(S(u))
= Cn(C

−1
n (y)).

Hence, S(u) = c and u = U(c) since c satisfies U ′(c) = 1
C′

n(C
−1
n (y))

. Therefore,

1

C ′
n(C

−1
n (y))

=
r(C−1

n (y)− U(c))

(r + λ)y − rc− λCn+1(C−1
n (y) + rl

λ
)
.

Taking this expression for 1
C′

n(C
−1
n (y))

into the right-hand side of the HJB equation, we
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have

RHS = rU(c) +
(r + λ)y − rc− λCn+1(C

−1
n (y) + rl

λ
)

C ′
n(C

−1
n (y))

= rU(c) + r(C−1
n (y)− U(c))

= rC−1
n (y)

= rVn(y)

= LHS.

Thus, Vn(y) = C−1
n (y) solves the following HJB equation.

The first order condition implies that S ′(U(c)) = C ′
n(C

−1
n (y)) = C ′

n(Vn(y)).

Moreover, since the agent is indifferent between exerting effort and shirking, he is

always willing to put in effort.
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APPENDIX B
APPENDIX FOR CHAPTER 2

B.1 Joint Performance

In this appendix, we derive the optimal contract for the case in which the

principal can only observe joint performance of the team. The optimal contract for

agent i is written in terms of his continuation-utility vi. At any moment of time,

given vi, the contract specifies agent i’s utility-flow ui, the continuation-utility v̄i if

the one of the agents makes a discovery, and the law of motion of the continuation

utility if both agents fail.

When the other agent exerts effort, by putting in effort instead of shirking,

agent i increases the team’s arrival rate from λ̂−i to λ. After success, his continuation

utility jumps from vi to v̄i. Thus, his benefit of exerting effort is (λ − λ̂−i)(v̄i − vi).

His cost of putting in effort is rl. To induce agent i to work, the contract should offer

him a higher benefit than cost of working, which leads to the following NIC condition

(λ− λ̂−i)(v̄i − vi) ≥ rl.

When agent i exerts effort, his continuation utility grows at the discount-rate r

and falls due to the flow of repayment r(ui− l) plus the expected repayment λ(v̄i−vi)

if the team completes the innovation. Thus, his continuation utility in case of failure

evolves according to

v̇i = rvi − r(ui − l)− λ(v̄i − vi).

Let Wn(v1, v2) be the principal’s minimum cost of delivering continuation util-
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ity (v1, v2) when the project is at stage n. Note that agent i’s NIC condition and

evolution of continuation utility only depend on his own policy variables. This prop-

erty implies that the cost function Wn(v1, v2) has a separated form : Wn(v1, v2) =

C1,n(v1) + C1,n(v2), where Ci,n is the principal’s cost function of providing agent i

with continuation utility vi when the project is at stage n. Ci,n is determined by the

following HJB equation

rCi,n(vi) = min
u,v̄

rS(ui) + C ′
i,n(vi)v̇i + λ(Ci,n+1(v̄i)− Ci,n(vi))

s.t.

v̇i = rvi − r(ui − l)− λ(v̄i − vi),

(λ− λ̂−i)(v̄i − vi) ≥ rl.

Similar to the individual-perforce case, we could use a diagrammatic analysis

to characterize the solution to the HJB equation. The property of the optimal contract

is summarized in the following proposition

Proposition A: At stage n (0 < n ≤ N), the contract for agent i that minimizes the

principal’s cost takes the following form:

1. The principal’s expected cost at any point is given by an increasing and convex

function Ci,n(vi) that satisfies the HJB equation and the boundary condition

Ci,n

(
λ̂−il

λ− λ̂−i

)
=

λCi,n+1(
(r+λ̂−i)l

λ−λ̂−i
)

r + λ
.

2. When the the team completes the project, agent i’s continuation utility jumps

to v̄i, which satisfies v̄i = vi +
rl

λ−λ̂−i
.
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3. In case of failure to complete the innovation, the continuation-utility vi is de-

creasing over time and asymptotically goes to λ̂−il

λ−λ̂−i
.

4. The transferred-utility flow ui has the same dynamics as continuation-utility vi.

Different from the individual-performance case, the lower bound on imple-

mentable continuation utility is a positive level: λ̂−il

λ−λ̂−i
. The positive lower-bound is

due to a free-rider problem that arises when only joint performance is observable. To

provide incentive, the principal should reward every agent when the team completes

an innovation. Thus, even if an agent shirks, he still has a chance to get the reward

when the other agent succeeds. Therefore, the principal cannot punish the agents too

severely. Otherwise, an agent will choose to shirk and free ride on the other agent’s

success if he cannot expect to get enough payments from his contract.

B.2 Proofs

Proof of Lemma 2.3.1

Proof. Suppose that the NIC condition is not binding and both v̄i,i and v̄i,−i are

strictly positive. It follows that all the Lagrangian multipliers γ, η2 and η3 equal to 0.

Then, first-order conditions (2.2) and (2.3) imply that C ′
i,n+1(v̄i,i) = C ′

i,n+1(v̄i,−i) =

C ′
i,n(vi). Since C ′

i,n(vi) ≥ C ′
i,n+1(vi +

rl

λ−λ̂−i
) and C ′

i,n+1(vi) is strictly increasing, it

follows that v̄i,i = v̄i,−i ≥ vi +
rl

λ−λ̂−i
. Hence,

λi(v̄i,i − vi) + (λ−i − λ̂−i)(v̄i,−i − vi) ≥ (λ− λ̂−i)
rl

λ− λ̂−i

= rl.

Thus, the NIC condition is non-binding, and both v̄i,i and v̄i,−i are strictly positive,
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which verifies our guess. Then, the dynamics of C ′
i,n(vi) satisfies

dC ′
i,n(vi)

dt
= γ(λ− λ̂−i) = 0.

Next, we analyze the dynamics of vi under two cases.

(i) λ−i ≤ λ̂−i

Since C ′
i,n+1(vi) ≥ S ′(vi) for all vi by Assumption A, it follows that

C ′
i,n(vi) ≥ C ′

i,n+1(vi +
rl

λ− λ̂−i

) ≥ S ′(vi +
rl

λ− λ̂−i

) > S ′(vi).

When C ′
i,n(vi) ≥ C ′

i,n+1(vi +
rl

λ−λ̂−i
) > 0, utility-flow ui is determined by first-order

condition S ′(ui) = C ′
i,n(vi). Consequently, S

′(ui) > S ′(vi), which implies that ui > vi.

Finally, we have

dvi
dt

= rvi − r(ui − l)− λi(v̄i,i − v)− λ−i(v̄i,−i − v)

≤ r(vi − ui)−
rlλ̂−i

λ− λ̂−i

< 0,

where the first inequality follows from v̄i,i = v̄i,−i ≥ vi +
rl

λ−λ̂−i
, and the second

inequality follows from ui > vi.

(ii) λ−i > λ̂−i

When vi ≥ λ̂−il

λ−λ̂−i
, we have

S ′(ui) = C ′
i,n(vi) ≥ C ′

i,n+1(vi +
rl

λ− λ̂−i

) > C ′
i,n+1(vi) > S ′(vi −

λ̂−il

λ− λ̂−i

),

where the last inequality follows from Assumption A. Hence, ui > vi − λ̂−il

λ−λ̂−i
. When

vi <
λ̂−il

λ−λ̂−i
, we have ui ≥ 0 > vi − λ̂−il

λ−λ̂−i
. Thus, we always have ui > vi − λ̂−il

λ−λ̂−i
.



www.manaraa.com

70

Therefore,

dvi
dt

= rvi − r(ui − l)− λi(v̄i,i − vi)− λ−i(v̄i,−i − vi)

≤ r(vi − ui)−
rλ̂−il

λ− λ̂−i

<
rλ̂−il

λ− λ̂−i

− rλ̂−il

λ− λ̂−i

= 0.

Proof of Lemma 2.3.2

Proof. On the contrary, suppose the NIC condition is non-binding and hence γ = 0.

The first-order conditions (2.2) and (2.3) imply that

v̄i,i = v̄i,−i < vi +
rl

λ− λ̂−i

,

where the last inequality follows from the condition that C ′
i,n(vi) < C ′

i,n+1(vi+
rl

λ−λ̂−i
).

Then,

λi(v̄i,i − vi) + (λ−i − λ̂−i)(v̄i,−i − vi) < (λ− λ̂−i)
rl

λ− λ̂−i

= rl.

The NIC condition is violated, which is a contradiction. Therefore, we must have the

NIC condition binds and γ < 0. Then, the dynamics C ′
i,n(vi) satisfies

dC ′
i,n(vi)

dt
= γ(λ− λ̂−i) < 0.

To analyze the dynamics of vi, we fix the value of vi and variate the value of

C ′
i,n(vi). When we do this, the value of dvi/dt is a function of the value of C ′

i,n(vi).
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Denote this function by f(C ′
i,n(vi)), the sign of which determined the dynamics of vi.

When the NIC condition is binding, we have

f(C ′
i,n(vi)) = r(vi − ui)− λ̂−i(v̄i,−i − vi).

Given C ′
i,n(vi), {ui, v̄i,i, v̄i,−i} are determined by the system of Kuhn-Tucker condi-

tions. Moreover, since both S ′ and C ′
i,n+1 are continuous functions, it follows that

f(C ′
i,n(vi)) is continuous in C ′

i,n(vi). Next, we derive the sign of f(C ′
i,n(vi)) under

three cases.

Case 1: λ−i = λ̂−i

When C ′
i,n(vi) ≥ 0, ui and v̄i,−i are determined by the following first-order

conditions

S ′(ui)− C ′
i,n(vi) = 0,

C ′
i,n+1(v̄i,−i)− C ′

i,n(vi) = 0.

Since both S ′ and C ′
i,n+1 are strictly increasing functions, when we decrease the value

of C ′
i,n(vi), both ui and v̄i,−i decrease, and hence f(C ′

i,n(vi)) increases. Therefore,

f(C ′
i,n(vi)) is a strictly decreasing function of C ′

i,n(vi) when C ′
i,n(vi) ≥ 0. If C ′

i,n(vi) <

0, then both ui and v̄i,−i equal 0. Hence, f(C
′
i,n(vi)) is a constant function of C ′

i,n(vi)

when C ′
i,n(vi) < 0.

Case 2: λ−i < λ̂−i

When C ′
i,n(vi) = C ′

i,n+1(vi +
rl

λ−λ̂−i
), from the proof of Lemma 2.3.1, both v̄i,i

and v̄i,−i equal to vi +
rl

λ−λ̂−i
> 0. Hence, both v̄i,i and v̄i,−i are positive when C ′

i,n(vi)

is very close to C ′
i,n+1(vi +

rl

λ−λ̂−i
). When both v̄i,i and v̄i,−i are positive, they are
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determined by the following system of equations

λiC
′
i,n+1(v̄i,i)− λiC

′
i,n(vi) + γλi = 0, (B.1)

λ−iC
′
i,n+1(v̄i,−i)− λ−iC

′
i,n(vi) + γ(λ−i − λ̂−i) = 0, (B.2)

λi(v̄i,i − vi) + (λ−i − λ̂−i)(v̄i,−i − vi) = rl. (B.3)

Since λi > 0, λ−i − λ̂−i < 0, and γ < 0, (B.1) and (B.2) imply that

C ′
i,n+1(v̄i,i) > C ′

i,n(vi) > C ′
i,n+1(v̄i,−i).

Combining (B.1) and (B.2), we have

(λ−i − λ̂−i)C
′
i,n+1(v̄i,i)− λiC

′
i,n+1(v̄i,−i) = −λ̂−iC

′
i,n(vi). (B.4)

When we decrease C ′
i,n(vi) starting from C ′

i,n+1(v+
rl

λ−λ̂−i
), the right-hand side

of (B.4) increases. It follows from (B.3) that v̄i,i and v̄i,−i variate in the same direction.

Suppose both v̄i,i and v̄i,−i go up. Then, the left-hand side of (B.4) drops off, and

the equality fails to hold. Thus, to let (B.4) hold, we must have both v̄i,i and v̄i,−i

decrease when C ′
i,n(vi) decreases. Moreover, we know that ui also decreases when

C ′
i,n(vi) goes dowm. Hence, f(C ′

i,n(vi)) increases when C ′
i,n(vi) decreases, as long as

both v̄i,i and v̄i,−i are positive.

When we keep decreasing C ′
i,n(vi), v̄i,−i may hit the lower bound 0. Then, if

we decrease C ′
i,n(vi) further, v̄i,−i remains at 0 and ui continues to decrease as long as

C ′
i,n(v) ≥ 0. Thus, f(C ′

i,n(vi)) still increases as C
′
i,n(vi) decreases until C

′
i,n(v) reaches

0. Finally, when C ′
i,n(vi) < 0, both ui and v̄i,−i equal 0, and f(C ′

i,n(vi)) becomes

constant function of C ′
i,n(vi).
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Case 3: λ−i > λ̂−i

Similar to the previous case, we decrease C ′
i,n(vi) starting from C ′

i,n+1(v +

rl

λ−λ̂−i
). When both v̄i,i and v̄i,−i are positive, they are determined by the following

system of equations (B.1)-(B.3).

Since λi > 0, λ−i − λ̂−i > 0 and γ < 0, (B.1) and (B.2) imply that

C ′
i,n+1(v̄i,i) > C ′

i,n+1(v̄i,−i) > C ′
i,n(vi).

When C ′
i,n(vi) decreases, the right-hand side of (B.4) goes up. Different from

the previous case, (B.3) implies that v̄i,i and v̄i,−i variate in different direction. Sup-

pose v̄i,i decreases and v̄i,−i increases, then the left-hand side of (B.4) goes down, and

the equality fails to hold. Thus, to let (B.4) hold, we must have v̄i,i increases and

v̄i,−i decreases when C ′
i,n(v) decreases. Moreover, ui decreases when C ′

i,n(vi) decreases.

Hence, f(C ′
i,n(vi)) increases as we decrease C

′
i,n(vi) and fix vi, as long as both v̄i,i and

v̄i,−i are positive.

When C ′
i,n(vi) becomes non-positive, utility flow ui remains at 0. But v̄i,−i

keeps going down as we continue to decrease C ′
i,n(vi). Thus, f(C

′
i,n(vi)) keeps increas-

ing as we decrease C ′
i,n(vi) and fix vi. Finally, v̄i,−i hits the lower bound 0. Denote

the value of C ′
i,n(vi) at which v̄i,−i reaches 0 at the first time by C̃ ′

i,n(vi) (we will use

it in the proof of Lemma 2.3.6). From then on, both v̄i,−i and ui remains at 0 as we

keep decreasing the value of C ′
i,n(vi), and therefore f(C ′

i,n(vi)) becomes a constant

function of C ′
i,n(vi).

To summarize, in all of the above three cases, f(C ′
i,n(vi)) is a continuous and

decreasing function of C ′
i,n(vi).
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Proof of Lemma 2.3.3

Proof. Since C ′
i,n+1(vi +

rl

λ−λ̂−i
) > C ′

i,n+1(vi) ≥ S ′(vi) by Assumption A, if C ′
i,n(vi) =

S ′(vi), then C ′
i,n(vi) < C ′

i,n+1(vi +
rl

λ−λ̂−i
). By Lemma 2.3.2, the NIC condition is

binding, and therefore

dvi
dt

= r(vi − ui)− λ̂−i(v̄i,−i − vi).

Utility flow ui satisfies the first-order condition that S ′(ui) = C ′
i,n(vi). Hence, S

′(ui) =

C ′
i,n(vi) = S ′(vi), which implies that ui = vi. From the proof of Lemma 2.3.2, we have

C ′
i,n+1(v̄i,−i) ≤ C ′

i,n(vi). Consequently,

S ′(v̄i,−i) ≤ C ′
i,n+1(v̄i,−i) ≤ C ′

i,n(vi) = S ′(vi),

which implies that v̄i,−i ≤ vi. Finally, combining ui = vi and v̄i,−i ≤ vi, we get

dvi/dt ≥ 0.

When vi = 0, C ′
i,n(0) = S ′(0) = 0, which implies that ui = v̄i,−i = 0. Thus,

dvi/dt = 0 when vi = 0.

Proof of Lemma 2.3.4

Proof. By Lemma 2.3.1, dvi/dt < 0 on the C ′
i,n(vi) = C ′

i,n+1(vi +
rl

λ−λ̂−i
) locus. By

Lemma 2.3.3, dvi/dt ≥ 0 on the C ′
i,n(vi) = S ′(vi) locus, with strict inequality when

vi > 0. Moreover, Lemma 2.3.2 implies that, given vi, the value of dvi/dt is a

continuous and strictly decreasing function of C ′
i,n(vi) when C ′

i,n(vi) ≥ 0. Therefore,

for any vi ≥ 0, there exists an unique value of C ′
i,n(vi) between S ′(vi) and C ′

i,n+1(vi +
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rl

λ−λ̂−i
) such that dvi/dt = 0. Moreover, the dvi/dt = 0 locus is determined by the

system of Kuhn-Tucker conditions and the following condition

rvi − r(ui − l)− λi(v̄i,i − vi)− λ−i(v̄i,−i − vi) = 0,

and both S ′, C ′
i,n+1 are continuous functions. Therefore, the dvi/dt = 0 locus is a

continuous curve that locates below the C ′
i,n(vi) = C ′

i,n+1(vi+
rl

λ−λ̂−i
) locus and above

the C ′
i,n(vi) = S ′(vi) locus. Finally, dvi/dt = 0 at C ′

i,n(0) = S ′(0) = 0 by Lemma 2.3.3.

Thus, the dvi/dt = 0 locus intersects the C ′
i,n(vi) = S ′(vi) locus at the origin.

Proof of Lemma 2.3.5

Proof. Since C ′
i,n(vi) = S ′(vi − λ̂−il

λ−λ̂−i
) < C ′

i,n+1(vi +
rl

λ−λ̂−i
), Lemma 2.3.1 implies that

the NIC condition is binding. Thus,

λi(v̄i,i − vi) + (λ−i − λ̂−i)(v̄i,−i − vi)− rl = 0. (B.5)

From the proof of Lemma 2.3.2, we have C ′
i,n+1(v̄i,i) > C ′

i,n+1(v̄i,−i), and hence

v̄i,i > v̄i,−i. Then it follows from (B.5) that

v̄i,i > vi +
rl

λ− λ̂−i

> v̄i,−i.

Utility flow ui is determined by the first-order condition S ′(ui) = C ′
i,n(vi),
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which implies ui = vi − λ̂−il

λ−λ̂−i
. It follows that

dvi
dt

= r(vi − ui)− λ̂−i(v̄i,−i − vi)

=
rλ̂−il

λ− λ̂−i

− λ̂−i(v̄i,−i − vi)

>
rλ̂−il

λ− λ̂−i

− rλ̂−il

λ− λ̂−i

= 0.

Proof of Lemma 2.3.6

Proof. When vi ≥ λ̂−il

λ−λ̂−i
, dvi/dt < 0 on the C ′

i,n(vi) = C ′
i,n+1(vi +

rl

λ−λ̂−i
) locus by

Lemma 2.3.1, and dvi/dt > 0 on the C ′
i,n(vi) = S ′(vi − λ̂−il

λ−λ̂−i
) locus by Lemma 2.3.5.

Moreover, By Lemma 2.3.2, fixing vi, the value of dvi/dt is a continuous and strictly

decreasing function of C ′
i,n(vi) when C ′

i,n(vi) ≥ 0. Therefore, there exists an unique

value of C ′
i,n(vi), which is between C ′

i,n+1(vi +
rl

λ−λ̂−i
) and S ′(vi − λ̂−il

λ−λ̂−i
), such that

dvi/dt = 0.

Next, we consider the case when 0 ≤ vi <
λ̂−il

λ−λ̂−i
. From the proof of Lemma

2.3.2, when C ′
i,n(vi) equals C̃ ′

i,n(vi), we have ui = v̄i,−i = 0 and hence dvi/dt =

r(vi − ui) − λ̂−i(v̄i,−i − vi) ≥ 0. Moreover, the value of dvi/dt is a continuous and

strictly decreasing function of C ′
i,n(vi) when C ′

i,n(vi) ≥ C̃ ′
i,n(vi). Therefore, there

exists an unique value of C ′
i,n(vi), which is between C ′

i,n+1(vi +
rl

λ−λ̂−i
) and C̃ ′

i,n(vi),

such that dvi/dt = 0.
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Thus, the dvi/dt = 0 locus is a continuous curve that locates below the

C ′
i,n(vi) = C ′

i,n+1(vi +
rl

λ−λ̂−i
) locus and the C ′

i,n(vi) = S ′(vi − λ̂−il

λ−λ̂−i
) locus.

Proof of Proposition 2.3.8

Proof. For part 1, it has been shown that Ci,n(vi) is determined by the HJB equation

and the boundary condition. From the phase diagram, C ′
i,n+1(vi) is a continuous and

strictly increasing function of vi. It follows that Ci,n(vi) is a convex function.

To describe the dynamics of transferred utility flow, let ui, ūi,i and ūi,−i be the

corresponding utility flow when the continuation utility are vi, v̄i,i and v̄i,−i.

When all of C ′
i,n(vi), C

′
i,n+1(v̄i,i) and C ′

i,n+1(v̄i,−i) are positive, (ui, ūi,i, ūi,−i)

are determined by the following first-order condition

S ′(ui) = C ′
i,n(vi),

S ′(ūi,i) = C ′
i,n+1(v̄i,i),

S ′(ūi,i) = C ′
i,n+1(v̄i,−i).

If λ−i = λ̂−i, then on the optimal path we have

C ′
i,n+1(v̄i,i) > C ′

i,n(vi) = C ′
i,n+1(v̄i,−i) ≥ 0,

which implies ūi,i > ui = ūi,−i.

If λ−i < λ̂−i, then on the optimal path we have

C ′
i,n+1(v̄i,i) > C ′

i,n(vi) ≥ C ′
i,n+1(v̄i,−i) ≥ 0,
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where the second inequity is strict when vi > 0. Hence, ūi,i > ui ≥ ūi,−i, with strict

inequality when vi > 0.

If λ−i > λ̂−i, then on the optimal path we have

C ′
i,n+1(v̄i,i) > C ′

i,n+1(v̄i,−i) > C ′
i,n(vi).

Therefore, when C ′
i,n(vi) ≥ 0, we have ūi,i > ūi,−i > ui. However, derivative of the

cost function could be negative when λ−i > λ̂−i. In this case, the utility flow equal

0. Therefore,

• if C ′
i,n+1(v̄i,i) > C ′

i,n+1(v̄i,−i) > 0 ≥ C ′
i,n(vi), we have ūi,i > ūi,−i > ui = 0.

• If C ′
i,n+1(v̄i,i) > 0 ≥ C ′

i,n+1(v̄i,−i)) > C ′
i,n(vi), we have ūi,i > 0 = ūi,−i = ui.

• If 0 ≥ C ′
i,n+1(v̄i,i) > C ′

i,n+1(v̄i,−i) > C ′
i,n(vi), we have ūi,i = ūi,−i = ui = 0.

To summarize, if agent i completes the innovation, the principal rewards him

by an upward jump in utility flow. If his coworker completes the innovation, then:

1) his utility flow does not change if λ−i = λ̂−i; 2) his utility flow drops down if

λ−i < λ̂−i; 3) his utility flow jumps up if λ−i > λ̂−i. These results prove part 2 and

part 3.

Finally, for part 4, note that on the optimal path vi is decreasing over time

and asymptotically converges to 0. Moreover, the transferred utility satisfies S ′(ui) =

C ′
i,n(vi) and both S and Ci,n are convex functions. Therefore, transferred utility u

has the same dynamics as continuation utility in case of failure.
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